
Breaking Down Complexity: MAML’s Impact on Web
Page Optimization in Developing Regions

Ayush Pandey
Computer Science, NYUAD
ayush.pandey@nyu.edu

Advised by: Professor Yasir Zaki, Professor Lakshminarayanan Subramanian

ABSTRACT
The web experience for users in developing regions contin-
ues to be subpar, despite the increased penetration of mobile
internet usage. This can be attributed to a combination of
increased web page complexity and inadequate optimization
efforts by content providers. Modern web pages are becom-
ing increasingly complex, often comprising more than 100
web objects, requiring over 30 TCP connections, 20 recursive
DNS lookups, and excessive usage of recursive JavaScript.
These factors significantly impact the initial load time, as
browsers must retrieve, parse, and execute these files before
rendering the page. In comparison to users in developed
regions who benefit from enhanced internet speeds, indi-
viduals in developing regions are generally plagued with
access to low-end smartphones and slower data connections,
hence exacerbating the issue of poor page load times. Recog-
nizing these challenges, this paper presents MAML, a novel
web specification language designed to simplify web pages,
thereby reducing costs and lowering barriers for content cre-
ation in developing regions. We have developed an intuitive
web-based user interface named “MAML Editor,” which en-
ables web developers to transform complex web pages into
significantly lighter versions with functionality almost equiv-
alent to the original. Furthermore, this editor is equipped
with an “Auto Translation Engine” that is designed to expe-
dite the process of converting pre-existing web pages into
MAML-compatible pages. We evaluated the efficacy of the
MAML editor through a competition involving 20 web devel-
opers with varying levels of web-development experience,
whowere tasked with the recreation of 50 existing web pages.

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 2, Spring 2024, Abu Dhabi, UAE
© 2024 New York University Abu Dhabi.

The results demonstrate that users equipped with our editor
were successful in reproducing many of these pages without
incurring a substantial quality reduction. Additionally, the
MAML editor’s simplification led to a significant reduction
in bandwidth requirements, which can decrease the average
data consumption for users in developing regions by ∼50%.
Additionally, the web browsing experience was substantially
accelerated, with a median page load time speedup of up to
five seconds.

KEYWORDS
MAML, Web Specification Format, Page Load Time, Auto
Translation Engine, MAML Editor, DOM Complexity
Reference Format:
Ayush Pandey. 2024. Breaking Down Complexity: MAML’s Im-
pact on Web Page Optimization in Developing Regions. In NYUAD
Capstone Project 2 Reports, Spring 2024, Abu Dhabi, UAE. 17 pages.

1 INTRODUCTION
In recent years, web development practices have evolved
significantly, with a strong emphasis on creating visually
appealing and interactive web pages. This evolution has led
to the widespread use of complex frameworks and libraries,
which, while powerful, often result in resource-heavy pages.
For example, popular frameworks like React and Angular
have become the go-to choices for many developers, but they
can contribute to increased page load times in developing
regions and increased resource consumption due to their size
and the complexity of the Document Object Model (DOM).
To analyze current trends in DOM complexity, we eval-

uated the top 1000 pages retrieved from Tranco’s [30] list
using Google Lighthouse, an open-source, automated tool
designed to improve web page quality across multiple di-
mensions, one of which is performance. Lighthouse flags
pages with more than 800 DOM elements, and recommends
DOM tree depth to be less than 32 for better performance.
The results of our evaluation show that 62.1% of these pages
feature more than 800 DOM elements, and pages reach a
maximum DOM tree depth of 60. Additionally, our analysis

Capstone Project 2, Spring 2024, Abu Dhabi, UAE Ayush

revealed that these pages have an average of 524.7 KB of
unused JavaScript and 81.9 KB of unused CSS.
Every modification to the DOM, no matter how minor,

can trigger a cascade of recalculations and re-renderings,
collectively known as reflows and repaints. These operations
are resource-intensive and can significantly degrade perfor-
mance, resulting in slower page loads and a suboptimal user
experience. Furthermore, the extensive use of JavaScript to
manipulate the DOM in frameworks like React and Angular
not only increases initial load times but also adds to ongo-
ing computational costs. Although these frameworks enable
developers to create highly interactive and responsive sites,
they often compromise speed, especially on low-end devices
and networks.

In response to these challenges, developers and organiza-
tions are increasingly advocating for more streamlined web
development approaches. Approaches such as Polaris [33]
and Shandian [36] prioritize optimizing the DOM Tree to
minimize its depth and complexity, thereby enhancing page
performance. However, they still heavily rely on JavaScript
execution and resource management, which can continue
to impact performance, particularly on devices with limited
processing power. This is where the concept of a flat layout
comes into play. By adopting a self-contained dictionary-like
representation, MAML significantly reduces the computa-
tional overhead and resource size associated with traditional
web development practices, without needing to compromise
interactivity.

2 BACKGROUND AND RELATEDWORK
In this section, we describe related work that demonstrates
the key factors that trigger poor performance for bandwidth-
constrained users and also outlines different related efforts
that have addressed this challenge.

2.1 Poor Web Performance in Developing
Regions

Poor web performance for users in developing regions can be
triggered due to two factors: network-induced and complexity-
induced delays.

Network-InducedDelays:Ameasurement study by Zaki
et. al. [39] showed that developing regions like Ghana suffer
from high page load times (multi-seconds), due to HTTP redi-
rects, DNS lookups, and TLS/SSL connection setups. They
found that the actual time spent downloading content repre-
sents only a small fraction of the end-to-end page download
time. Koradia et. al. [28] have shown that cellular data con-
nectivity in India suffers from significantly high latencies
of up to 1200 ms. It has been shown in another work [17]
that in bandwidth constrained environments, TCP flows
experience severe unfairness, high packet loss rates, and

flow silences due to repetitive timeouts, thereby resulting in
poor web performance. Other works have pointed out traffic
engineering and lack of infrastructure as reasons for high
delays [14, 22, 24, 25]. Feamster et. al. [20] have also demon-
strated that despite having web caches, there is high latency
in South Africa due to the fact that the inter-connectivity
within the country is still a major issue. Studies have also
looked at inefficient DNS configurations, a lack of local con-
tent caching servers, and a lack of cross-border cable sys-
tems [23, 27, 39].

Complexity-InducedDelays: In addition to the network-
related delay, the complexity of web pages is another issue
causing high delays while rendering web pages. Modern
web pages have evolved significantly over the past couple of
years into a very complex ecosystem with a large number of
objects that span several servers across the globe. Butkiewicz
et. al. [8] have shown that more than 60% of web pages re-
quest data from at least 5 different non-origin sources, and
that these contribute to more than 35% of the overall page
size. Furthermore, in order to load a page, a modern browser
must fetch and render several objects, which include HTML
files, JavaScript files, CSS files, image files, and other objects.
These objects form a complex object dependency graph. That
is, as these objects are downloaded and evaluated, they trig-
ger the download of other objects. For example, a JavaScript
object can include other JavaScript files that have to be re-
cursively fetched when the page is being displayed. This
unpredictability in the object dependency graph of a web
page incurs delays in the rendering page [9, 33, 35]. This sit-
uation is exacerbated by the fact that web pages are getting
more and more complex every day.

2.2 Existing Solutions And Related Work
To overcome the challenges of poor web performance in
developing countries, several systems and techniques have
been proposed in recent years to optimize web browsing
over poor network connections, including network-level op-
timizations, caching techniques, and content distribution
mechanisms [15, 16, 18, 19, 26, 34]. Recent works [9, 33, 36]
have focused on the complexity of web pages and suggested
different approaches to address them. A system named Klot-
ski [9] proposed re-prioritizing web content relevant to a
user’s preferences by enabling fast selection and load-time
estimation for the subset of resources to be prioritized. An-
other recent system, Shandian [36], proposed restructuring
the web page load process and exercising control over what
portions of the web page get communicated and in what or-
der. They chose a split-browser architecture to deploy their
solution. Polaris [33] uses fine-grained object dependency
graphs to load the objects in the optimal way for the browser
to enable fast loading of the page.

Breaking Down Complexity: MAML’s Impact on Web Page Optimization in Developing Regions Capstone Project 2, Spring 2024, Abu Dhabi, UAE

Many solutions have been recently proposed to optimize
the usage of JavaScript in modern web pages. For example,
JSCleaner [13] leverages a rule-based solution to identify and
block non-essential JavaScript elements. Such elements are
non-critical to the user experience, given that their code does
not contain any functions that handle page content or func-
tionality. Similarly, SlimWeb [12] proposed a machine learn-
ing technique to classify JavaScript elements into several
categories based on categories identified by experts in the
web community [7]. SlimWeb suggests blocking JavaScript
categories related to Advertising, Analytic, and Social in order
to speed up the web browsing experience.

Another solution,Muzeel [29], focuses on optimizing JavaScript
code by identifying and eliminating deadcode. That is, JavaScript
code that is present in the JavaScript general-purpose li-
braries but not used by the web page. Muzeel utilizes a novel
interaction bot to emulate user interactions, which in turn
helps in identifying JavaScript functions that can safely be
removed without affecting the user experience.

2.3 Developing regions related work
In the context of developing regions, recent and noteworthy
commercial attempts have been made by Google AMP [2],
Facebook Instant articles [3], and Opera mobile browser [4].
AMP introduced new HTML tags and elements that are used
to manage resource loading. AMP enables parallel download
of objects by leveraging iframes and by declaring the size
and position of objects upfront. AMP also uses caches to
ensure that pages satisfy all AMP specifications and enable
pre-rendering of pages. AMP caches provide the point where
other optimizations such as reordering HTML tags, rewrit-
ing JavaScript URLs, compression, and other image opera-
tions are performed. Facebook Instant Articles is a platform
within the mobile Facebook application created by Facebook
for publishers to create fast and interactive articles on Face-
book. Facebook claims instant articles make the loading of
articles ten times faster than the loading of standard mobile
articles. Facebook enables faster access to instant articles by
preloading the data. On tapping the article, only very small
data that is not previously preloaded is downloaded, and
hence the article loads faster than a standard mobile article.
Opera Mobile browser and its lower-end sibling, Opera Mini
browser, request web pages through a proxy server called
Opera Turbo. Opera Turbo compresses web pages by about
90% rendering them faster by two to three times. Opera has
another extreme compression method called Mini mode. It
has a higher compression ratio than Turbo mode, but with a
loss of certain functionality in the web page rendered. Also,
Opera Mini Browser has an in-built adblocker, which fur-
ther prunes content sent to the mobile phone. As of August

2017, most of the market for Opera browsers is from devel-
oping countries with slower internet, like India, Bangladesh,
Indonesia, South Africa, Nigeria, Ukraine, Tanzania, and Pak-
istan.
The design philosophy of MAML fundamentally differs

from these works in that it aims to pre-compile web pages to
simplify the HTML representation of a page. MAML explic-
itly eliminates recursive handling of objects in a page and
simplifies the DOM (Document Object Module) representa-
tion to a simpler, flatter layout while maintaining functional
equivalence with the original page. We believe that reliance
on HTML, JavaScript, and CSS is the underlying problem,
and none of the above-mentioned solutions tackles this fun-
damental issue. While Google AMP comes really close to
simplifying the web page and doing several optimizations, it
still relies heavily on HTML.

3 MAML DESIGN
This section describes MAML, a simplified web specification
language that is designed to create flatter web pages for users
in developing regions. Unlike hierarchical DOM structures
present in today’s web, MAML uses absolute positions to
place elements on the viewport. This approach significantly
reduces the depth of the DOM tree and eliminates the need
for complex calculations to determine the layout, further re-
ducing the computational load on the device. Finally, MAML
does not allow any JavaScript to be used, thus eliminating a
lot of today’s page complexities.

MAML is designed to be lightweight and modular by elim-
inating unnecessary elements and attributes that contribute
to the bloat of modern web pages. The MAML pages have
a more efficient page structure. This modularity also allows
for easier maintenance, as changes can be made to individual
components without affecting the entire web page. MAML
is built to be fully backward compatible with HTML and,
hence, can eventually run on any of today’s web browsers.

3.1 Data Structure
MAML introduces a new format for writing web pages based
on the flat individual element approach, where each element
would retain all the necessary information and attributes
related to itself in a self-contained dictionary-like representa-
tion. For example, the following is an example that illustrates
the general format of MAML:

{
"type":"img","w":268,"h":31,"x":336,"y":15,"z":1,
"src":"https://example.com/img/abc.webp",
"alt":"Alternate Text","fit":"fill"

}

Capstone Project 2, Spring 2024, Abu Dhabi, UAE Ayush

0

1000

2000

3000

4000

To
ta

l n
um

be
r o

f D
OM

 e
le

m
en

ts

(a)

0

20

40

60

80

100

120

M
ax

im
um

 n
um

be
r o

f c
hi

ld
re

n
(b)

0

50

100

150

200

Un
us

ed
 C

SS
 b

yt
es

 (K
B)

(c)

0

250

500

750

1000

1250

1500

Un
us

ed
 JS

 b
yt

es
 (K

B)

(d)

Figure 1: Web complexity for the top 1000 popular websites according to the tranco list

Each line of the MAML data structure is a hash map con-
taining key-value pairs, where the key represents an ele-
ment’s property and the value is the property’s assigned
value. The use of a hash map data structure ensures that
accessing the value of a property has a time complexity of
O(1). In the above example, the MAML page has a single
element of type “image”, with attributes related to the po-
sition of where that image should be displayed on the web
page viewport (i.e., the x and y coordinates of the upper left
corner pixel of the image). In addition, MAML also speci-
fies the z coordinates to establish element order in terms of
depth, whereas the size of the displayed element is repre-
sented by the width (w) and height (h). Finally, the image
element also specifies the URL to the image source as well
as the alternative text.

The resulting MAML file (or the MAML version of a web
page) is a collection of MAML data structures separated by
a newline character (\n) and has an extension of .maml.

3.2 Supported Elements
In designing MAML, our focus is to support a wide variety of
web page components. As such, MAML currently supports
the following list of elements:

1. Text: This element is used to add textual content on
the web page. It can be customized with different fonts,
sizes, colors, and alignments to match the design of
the page.

2. Shape: This element is used to create geometric shapes
such as rectangles and ellipses. It can be utilized for
decorative purposes or as a background for other ele-
ments.

3. Text Field: This element provides an input field for
users to enter text. It is commonly used for forms,
search bars, and other interactive components that
require user input.

4. Button: This element creates a clickable button that
can trigger actions or navigate to different pages.

5. Dropdown: This element allows the creation of a
dropdown menu with a list of options. It is useful for
navigation menus, filters, or any other scenario where
a selection from multiple options is required.

6. Image: This element is used to display images on the
webpage. It supports PNG, JPEG, and WEBP image
formats.

7. Carousel: This element creates a slideshow or carousel
of images that are automatically cycled through. It is
often used for showcasing multiple images in a limited
space.

8. Video: This element enables the embedding of video
content into the web page.

9. Script: This element allows adding MAMLScript, a
scripting language we have developed to be used with
the MAML data structure (See Section 3.4). It is used
to add dynamic content updates on the web page.

3.3 Properties of a MAML Element
3.3.1 Mandatory Properties. Each MAML element contains
a few mandatory properties. Table 1 shows these properties
alongside their descriptions.

Property Description
type type of element

x x-position of element in pixels
y y-position of element in pixels
z z-position of element as integer
w width of element in pixels
h height of element in pixels

display whether to make the item visible or not
Table 1: Mandatory Properties of a MAML Element

3.3.2 Additional Properties. Based on the type of element,
each MAML element has its own set of additional properties,
as demonstrated in Table 2.

Breaking Down Complexity: MAML’s Impact on Web Page Optimization in Developing Regions Capstone Project 2, Spring 2024, Abu Dhabi, UAE

Element Available Properties
text id, text, fontFamily, textAlign, fontSize, color,

fontStyle, fontWeight, textDecoration, dis-
play

shape id, backgroundColor, borderRadius, display
text-field id, placeholder, backgroundColor, display
button id, text, display

dropdown id, options, display
image id, img, objectFit, display

carousel id, img, display
script code

Table 2: Additional Properties of MAML Elements

3.3.3 Exceptions. In order to support additional functional-
ity and interactivity within the MAML specifications, a few
exceptions are required. These exceptions are:

• The script element does not include the required prop-
erties: x, y, z, w, h, and display. This is because these
values are of no use to the script, given that it is not a
visible element and is not associated with a location
on the screen.

• The src property of an img element can optionally be
another hash map with two keys - source & thumbnail,
each containing URL values. The source stores the URL
of the image in its original size, while thumbnail stores
the URL of a compressed version of the same image to
be used as a thumbnail. If the value of the src property
is a string instead of a hash-map, same URL is used for
both source and the thumbnail.

3.4 MAMLScript
Given that MAML’s main goal is aimed at reducing the com-
plexity of web pages and providing a more flatter structure to
these pages, we decided not to support JavaScript in MAML.
There have been many studies in the literature that show the
complexity of JavaScript on today’s web, and how it is one
of the main reasons behind a bloated web, especially in the
context of developing regions [10–13, 29]. Instead, we opted
to design a simpler scripting language that can support a
limited set of functionality and page interactivity, which we
call “MAMLScript”.
MAMLScript is included at the end of the MAML file

within a script element that has a property named code. The
value of this property contains the MAMLScript code. When
the MAML file is parsed, this element gives information
about the dynamic updates applied to various elements. This
method simplifies the mapping of actions to specific page
components, thereby facilitating a more streamlined interac-
tivity framework. The following example demonstrates the
script element:

{
"type":"script",
"code":"MAMLScript is included here."

}

3.4.1 Structure. The structure of MAMLScript closely mir-
rors familiar programming constructs found in languages
like JavaScript, making it accessible to a broad range of de-
velopers. This design choice not only reduces the learning
curve but also enables developers to leverage their existing
coding skills when working with MAML files.

Below is an example of a MAMLScript:
on("click", "button1") {

show("image2");
hide("image1");
swap(val("input3"), "text3");

}

In this example, the MAMLScript configures a sequence
of actions that are executed in response to the click event on
"button1". Upon activation, the script first makes "image2"
visible using the show("image2") trigger. Concurrently, it
hides "image1" from viewwith the hide("image1") trigger,
ensuring that "image2" takes its place on the screen. Finally,
the script swaps the text of the element "text3" to the value
of the text input field "input3" using the swap(val("input3"),
"text3") trigger.

3.4.2 Listeners and Triggers. MAMLScript uses an Event-
Driven Programming (EDP) paradigm. Each functionality is
determined by using one listener followed by one or more
triggers. In the same example mentioned in Section 3.4.1, on
is used to listen to an event "click" on element id “button1”.
Three functions–show, hide, and swap–are then triggered
on “image2”, “image1”, and “text3” one by one. Additionally,
MAMLScript supports nested triggers—triggers that return
values can be used as a value for another trigger as illus-
trated by the swap and val triggers used together in the
same example.

Table 3 shows the available listeners with their usage, and
Table 4 shows the available triggers with their usage.

Listener Usage
click on("click", element_id) { [triggers...] }

change on("change", element_id) { [triggers...] }
keydown on("keydown", element_id, key_name) { [trig-

gers...] }
reach on("reach", element_id) { [triggers...] }
timer on("timer", seconds) { [triggers...] }

Table 3: Listeners and their Usage

Capstone Project 2, Spring 2024, Abu Dhabi, UAE Ayush

Trigger Usage
val val(element_id);

show show(element_id);
hide hide(element_id);
swap swap(content, element_id);

Table 4: Triggers and their Usage

3.4.3 Supported Functionalities. Currently,MAMLScript sup-
ports the following functionalities that can be used in con-
junction with each other:

(1) Listening to a click event.
(2) Listening to changes in value of input elements.
(3) Listening to a key press.
(4) Listening for a user reaching a specific location on the

page by scrolling.
(5) Listening to the completion of a countdown timer.
(6) Retrieving the value from an input field or a dropdown

selector.
(7) Toggling the visibility of an element on or off.
(8) Swapping the content of an element with a different

value.

These functionalities support interactive features that are
prioritized in web development, based on our evaluation
of the top 100 websites from Tranco’s list[30]. For instance,
responding to user inputs and interaction events such as
clicks, key presses, and changes in input fields enables the
creation of responsive interfaces that dynamically react to
user actions. This is crucial for forms, real-time validations,
and interactive controls.
The following were identified to be the most commonly

used interactive features in our evaluation, with the first
seven features currently supported by MAML:

(1) Dropdown menu
(2) Loading new content when the page reaches its bottom
(3) Video player
(4) Carousel
(5) Component that appears after scrolling below a certain

point
(6) Countdown timer
(7) Notification window
(8) Animation triggered by scrolling
(9) Auto-animation
(10) Toggle button that changes page theme
(11) Display a video previewwhen hovering over the thumb-

nail the thumbnail

User Interface

Auto Translation
Engine

URL to MAML

MAML to HTML

MAMLScript to Js
API Service

Database

Figure 2: MAML Editor’s Architecture

3.4.4 Future Considerations. As MAMLScript continues to
evolve, the goal is to standardize it as a robust, developer-
friendly language that can serve as a standard for interactiv-
ity in web development. To this end, future versions are ex-
pected to include more sophisticated features such as the abil-
ity to make API requests and enhanced error handling capa-
bilities. MAMLScript might include capabilities for dynamic
styling changes akin to CSS pseudo-classes. This means that
MAMLScript could allow developers to define conditions un-
der which certain styles are applied, mimicking the behavior
of CSS pseudo-classes like :hover or :active, which change
styles based on user interactions. These advancements aim
to make MAMLScript not only a tool for creating interactive
content but also a comprehensive solution for developing
complex web applications that are resource efficient.

4 MAML EDITOR
To enable the creation of web pages that adhere to MAML
specifications, a specialized web page editor is essential. Ex-
isting commercial web page editors lack the necessary cus-
tomization options, such as the ability to export web pages
in a specific format. Therefore, we have developed a dedi-
cated MAML Editor that facilitates the creation of web pages
using the MAML format. This can simplify and facilitate the
easy creation of MAML pages for web developers who are
interested in creating MAML pages.
The MAML Editor (see Figure 3) is a web application de-

signed for both experienced and inexperienced web devel-
opers, meaning that no prior web development experience
is required to use the editor. The editor features a drag-and-
drop interface to design the layout of the web page and add
interactivity to the elements. In this section, we discuss the
user workflow and the implementation of the MAML Editor.

4.1 User Workflow
To begin creating pages with the MAML Editor, users are
required to sign in using Google OAuth 2.0 (or “Sign in with
Google”). This login step is crucial, as it enables the storage of

Breaking Down Complexity: MAML’s Impact on Web Page Optimization in Developing Regions Capstone Project 2, Spring 2024, Abu Dhabi, UAE

their last saved work and ensures a seamless user experience.
Once logged in, users can: 1) create a MAML page from
scratch; 2) import an existing .maml file from their local
machine and customize it; or 3) import a URL that converts
an existing public web page to the MAML format using the
“Auto Translation Engine” (See Section 4.2.4). To design the
layout, users are required to drag and drop elements from
the sidebar on the left. Once an element is dropped, users
see options to change the position, styles, and additional
properties of the element.
To add interactivity to the elements, users can use the

“Interactivity Designer”. Users are required to drag and drop
listeners and triggers to add event-driven behavior to the
elements. For example, a user can set up a button to hide
a specific image when clicked. The interactivity designer
provides a visual interface for defining these interactions,
making it easy for users to add dynamic functionality to their
web pages.

Once the page is complete, users can either: 1) export the
page into a MAML file or 2) save their page to the cloud and
preview an equivalent HTML file generated by parsing the
MAML file.

4.2 Implementation
We implemented the MAML Editor as a web application that
can run on any modern web browser. We used a microser-
vices architecture as demonstrated in Figure 2, primarily
consisting of a User Interface (UI) developed using Next.js
and TypeScript, a Node.js API service to handle APIs
and authentication, a MongoDB database for data storage,
and an Auto Translation Engine developed using Python
and Selenium [5] for converting existing web pages into the
MAML format. In this section, we describe the design and
implementation of each service in detail.

4.2.1 User Interface. The MAML Editor’s user interface is
inspired by other popular web editors, such as Wix [38],
Elementor [21], Webflow [37], etc. Figure 3 shows a sample
screenshot of the MAML editor user interface. It features
a large canvas (Figure 3a) with an initial size of 1200px x
800px, whose height can be increased as elements are added.
A toolbar (Figure 3b) is positioned on the left side of the
canvas, allowing users to add various elements to their page.
On the right side, an “Interactivity Designer” (Figure 3f) is
placed to help users add dynamic content updates.

The header at the top contains a few useful tools: “Import”
(Figure 3c), “Download Progress” (Figure 3d), and “Save &
Preview” (Figure 3e). Users can import a MAML file or a
MAML-converted version of an existing web page using
the import menu. The download progress button creates a
MAML file of the page the user is designing, allowing them
to save their progress on their local machine. The save &

preview button saves the MAML page to the cloud and opens
an HTML preview of the page in a new tab.

The interactivity designer (Figure 3f) can be opened using
a toggle button placed on the right side of the canvas. Users
can drag listeners and triggers into the interactivity designer
to add event-driven behavior to the elements without need-
ing to write a single line of MAMLScript code. Available lis-
teners include: click, change, keydown, reach, and timer, each
with specific functionalities. For example, the click listener
can be used to execute specified triggers when an element is
clicked. Similarly, users can utilize various triggers such as
val, show, hide, and swap to manipulate the content or visi-
bility of elements. For instance, the show trigger can be used
to make an element visible. These triggers can be combined
with listeners in the interactivity designer to create interac-
tive behaviors on the web page, all through a user-friendly
drag-and-drop interface.

4.2.2 Web Server. The backend web server is primarily re-
sponsible for managing APIs that facilitate several key func-
tions:

1. Authenticate: This API authenticates a Google user
by verifying a token retrieved by using the "Sign in
with Google" feature and returns a JSON Web Token
(JWT) for the user interface to use for all other API
requests.

2. Upload Image: This APImanages the upload and stor-
age of images used in the MAML pages. All uploaded
images are stored in an AWS S3 bucket.

3. Translate: This API interacts with the Auto Transla-
tion Engine (see Section 4.2.4), which is responsible for
converting existing web pages into the MAML format,
and converting a MAML page to an equivalent HTML
file.

4. Save: This API allows users to save their MAML pages.
The saved progress is stored in a MongoDB database,
enabling users to continue their work from where they
left off, across different devices or sessions.

4.2.3 MongoDB Database. The MAML Editor uses a Mon-
goDB database to store authenticated user information and
the pages created by them. Each user document includes
a unique user identifier, along with metadata such as their
email address and the date of account creation. The pages are
stored as separate documents, each containing the MAML
representation of the page, the user’s identifier, and times-
tamps for creation and last modification.

4.2.4 Auto Translation Engine. This engine is designed to
streamline the process of importing existing web pages into
the MAML Editor. It can also convert a MAML page to
its equivalent HTML page and transpile MAMLScript to
JavaScript.

Capstone Project 2, Spring 2024, Abu Dhabi, UAE Ayush

Figure 3: MAML Editor’s User Interface

Theworkflow of the Auto Translation Engine begins when
the user inputs the URL of a web page in the Import -> Im-
port from URL section of the MAML Editor. The translator
initiates a Selenium Google Chrome instance on the server
and navigates to the specified web page. To ensure that all
resources, especially those on websites using lazy loading,
are fully loaded, the script first performs a sequential scroll
through the entire web page, from top to bottom, and then
returns to the top. Once the entire web page has loaded, the
engine conducts a Depth-First Search (DFS) of all HTML ele-
ments on the page and extracts necessary information from
them. For each supported element, the engine converts it
into the corresponding MAML format, while simultaneously
recording the element’s two-dimensional layout coordinates
on the page and its hierarchical positioning in terms of stack-
ing order relative to other elements.
The generated MAML file is then stored on the server,

and its corresponding public URL is returned in the API
response, enabling it to be imported into the MAML Editor’s
user interface.

5 EVALUATION
In order to evaluate MAML, we organized a MAML competi-
tion aimed at creating the best-looking MAML page in terms
of how closely it resembles the original version of the page,
as well as in terms of the functionality and interactive ele-
ments that mimic the original page. We recruited 20 students
from an internationally recognized university to participate
in the competition. The competition was conducted in an
asynchronous manner, i.e., students were allowed to work on
the creation of MAML pages on their own over the course of
two weeks. Each student was given a list of pre-determined

web pages that we manually vetted to be suitable for the
competition, and they were asked to create as many MAML
pages as possible as they wanted. The students were given
a short introduction to how to use the MAML editor, along
with a few instructions.

The primary objectives of the competition were to: 1)
assess the performance improvements of MAML pages; 2)
evaluate the visual fidelity of MAML pages in comparison to
the original pages; 3) test the effectiveness of the MAML edi-
tor’s drag-and-drop functionality in web page construction;
and 4) identify any potential improvements for the editor.

5.1 Competition Setup
To engage students, we distributed posters across campus
and posted in the university’s “Room of Requirement” Face-
book group. Interested participants were invited to fill out
a registration form. The competition offered incentives, in-
cluding prizes such as an iPhone 13, an iPad, and AirPods for
the first, second, and third place winners, respectively. We
received 20 registrations, which we subsequently emailed
five URLs to recreate using the MAML Editor.

5.2 Web Pages Selection Criteria
We announced that recreating each page would take between
30 minutes and an hour. To ensure this timeframe, we com-
piled a list of websites from various sources ([30–32]) and
manually verified each URL by opening it in a browser to
confirm that it could be completed within the specified time.
A final list of web pages was then assigned to the participants
for recreation.

Breaking Down Complexity: MAML’s Impact on Web Page Optimization in Developing Regions Capstone Project 2, Spring 2024, Abu Dhabi, UAE

5.3 Pre and Post Competition Survey
Before beginning the creation of the assigned web pages,
participants were required to fill out a form asking about
their expertise in web development and how important page
load time is for them in building a website. We found that
the largest percentage of participants were beginners, com-
prising 31.6%. Moreover, the largest number of participants
responded with either 4 or 5 (see Figure 4), meaning that it’s
crucial for them when building a website. Table 5 shows the
distribution of participants’ web development skills. Appen-
dix B describes the details of the survey.

Table 5: Participants’ web experience

None Beginner Intermediate Advanced
% 7.9% 31.6% 31.6% 28.9%

0
Not at all
important

1 2 3 4 5
Extremely
important

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

How important is plt when developing web pages?

Figure 4: Pre-survey question on the importance of
page load time

5.4 Quantitative Evaluation
To evaluate the quantitative gains in terms of page load
times speedups, and bandwidth savings, we compared the
50 MAML pages against their original counter parts. We
utilized the webpagetest tool to automate the loading of
the pages. Each page was loaded three times over a network
configuration of 12 Mbps downlink/uplink rates and 70 ms
round-trip-time. Figure 5a shows the cumulative distribution
function (cdf) of the delta difference between the original
and their MAML pages counterparts. As can be seen, there
are four different cdfs each corresponding to a different tim-
ing metric: first contentful paint (orange), speed index (red),
DOM complete (blue), and page load time (green). The result
demonstrates that, on median, MAML is able to reduce the
pages’ metrics significantly compared to their original ver-
sions, achieving a speed index reduction of approximately 2
seconds and a page load time reduction of 5 seconds. As for
the page size and bandwidth savings, Figure 5b shows that
theMAML pages have a lower average page size compared to

their original ones, at least for more than 25 of the 50 created
MAML pages. The average page size was reduced from 3 MB
down to about 1.7 MB (as can be seen in the boxplots). The
reason why some of the MAML pages had a slightly higher
page size (left size of the cdf curve below a delta of zero)
was due to the fact that our participants did not optimize
for the images, where some participants took screenshots of
the images from the original pages and saved them in png
file format, which increased the overall page size. Despite
the larger page size, MAML still had lower page load times
across all pages compared to their original versions.

5.5 Qualitative Evaluation
In the previous section, we showed that MAML achieves
significant improvements over both the web pages’ timing
metrics as well as the page size. However, it is crucial to
study the impact of this on the quality of the generated
pages. For example, it is important to compare the visual
similarity between the original pages and the MAML ones.
In addition, it is also important to evaluate the functionality
and interactivity of the MAML pages when compared to the
original ones. As such, we first conducted a study using the
popular crowd-sourcing tool Prolific[1], to ask participants
to compare screenshots of MAML pages to their original
counterparts. The participants were asked to rate the content
similarity between the two on a scale from 0 to 10, and were
also asked to assess if there was any missing content in the
MAML pages. Figure 6(a) shows the cdf of the participants’
responses (depicted in blue). The results show that for all
pages, the participants rated the pages as at least “moderately
similar” or more. In fact, themedian ratingwas 7.5, indicating
a high visual similarity of the MAML pages to the original
ones. In order to assess the functional similarity, we evaluated
the MAML pages ourselves, given that this task is not an
easy one and requires a lot of expert attention. The result
of this analysis is depicted by the orange cdf in Figure 6(a).
Here, 95% of the MAML pages had a moderately functional
similarity, with a median score of 8, indicating again a high
functional similarity.
Regarding missing content, 50% of the participants indi-

cated the presence of missing content in the MAML pages.
However, when we asked them to score the impact of that
missing content, the median score was around 3.5, indicat-
ing a low impact. In fact, no missing content was ranked as
having more than moderate impact (blue cdf in Figure 6(b)).
Similarly, we also evaluated the impact of the missing page
functionality and found that was below moderate in half of
these pages, and was higher in the other half (orange cdf in
Figure 6(b)). Finally, we asked the participants if they were
willing to tolerate missing content in favor of faster page

Capstone Project 2, Spring 2024, Abu Dhabi, UAE Ayush

−5 0 5 10 15 20
Delta (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

page load time
speed index
DOM complete
first contentful paint

(a) Timing metrics

0 5 10 15 20
Delta (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Original MAML0
2
4
6
8

Si
ze

 (M
B)

(b) Page size

Figure 5: Quantitative analysis: delta differences between MAML and Original webpages

0
Not similar

at all

1 2 3 4 5
Moderately

similar

6 7 8 9 10
Identical

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Rate the content similarity of the two pages
Visual similarity
Functional similarity

(a) Visual similarity

0
No impact

1 2 3 4 5
Moderate

impact

6 7 8 9 10
Extreme
impact

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Rate the impact of the missing content on the
user experience

Visual impact
Functional impact

(b) Missing content impact on user experience

0
Not willing

at all

1 2 3 4 5
Moderately

willing

6 7 8 9 10
Extremely

willing

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Willingness to sacrifice missing content
for a significant increase in loading speed

(c) Willingness to tolerate missing content in
favor of faster loading speed

Figure 6: MAML webpages vs. Original webpages in terms of content similarity

0
Extremely

hard

1 2 3 4 5 6 7 8 9 10
Very easy
to learn

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Rate the learning curve of the MAML editor

(a) Learning curve

0
Terrible

1 2 3 4 5 6 7 8 9 10
Excellent

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Rate the MAML editor user interface

(b) Web interface

0
Unusable

1 2 3 4 5 6 7 8 9 10
Easy to use

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Rate the MAML editor usability

(c) Overall usability

Figure 7: MAML Editor post competition survey results

load times, and in fact, almost all were moderately willing
to do so with a median score of 7 (see Figure 6(c)).

5.6 Survey Results
In this section, we wanted to evaluate the competition par-
ticipants’ experience with the MAML editor. As such, we
asked the participants to rank the editor’s learning curve,
the quality of the web interface, and the overall usability
of the MAML editor. Figure 8 shows the cdfs of the rating

scores for the above questions. The results show that the
participants thought that the MAML editor was easy to learn
(median score of 7), with slightly lower rating scores on the
user interface of the editor (median score of 5). Finally, the
participants ranked the that overall usability of the tool rela-
tively high, with more than 60% of them giving a score of 5
and above.

Breaking Down Complexity: MAML’s Impact on Web Page Optimization in Developing Regions Capstone Project 2, Spring 2024, Abu Dhabi, UAE

0
Extremely

hard

1 2 3 4 5 6 7 8 9 10
Very easy
to learn

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Rate the learning curve of the MAML editor

(a) Learning curve

0
Terrible

1 2 3 4 5 6 7 8 9 10
Excellent

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Rate the MAML editor user interface

(b) Web interface

0
Unusable

1 2 3 4 5 6 7 8 9 10
Easy to use

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(%
)

Rate the MAML editor usability

(c) Overall usability

Figure 8: MAML Editor post competition survey results

6 CONCLUSION
In this paper, we introduced the Mobile Application Markup
Language (MAML), a web specification language developed
with a minimalist flat layout. MAML is specifically designed
to reduce computational demands and data transmission
needs, facilitating faster loading of web pages in developing
regions. The creation of an intuitive web-based user interface
for MAML allows developers to easily convert existing com-
plex web pages into MAML’s streamlined format. This user
interface is crucial for broader adoption and practical usabil-
ity, enabling developers to make significant contributions to
the digital landscape in resource-constrained environments.
Furthermore, we developed an innovative feature within

the MAML Editor that automates the conversion of tradi-
tional web pages into the MAML format. This automation
enables rapid deployment of optimized pages that require
minimal customization, thus streamlining the process signifi-
cantly. Our comprehensive testing and analysis have demon-
strated that web pages converted to MAML format not only
load faster but also consume less data. These benefits are
particularly valuable in bandwidth-constrained regions, po-
tentially transforming web access and usability.

Lastly, our analysis through a user study involving web de-
velopers confirms the practical effectiveness and ease of use
of the MAML Editor. The positive feedback from developers
underscores MAML’s potential impact on real-world web de-
velopment practices, highlighting its significance as a trans-
formative tool for global digital inclusivity. This study paves
the way for further research and development in optimizing
web technologies to better serve diverse global communities.

REFERENCES
[1] [n.d.]. Prolific | Quickly find research participants you can trust. https:

//www.prolific.com/. Accessed: 2024-05-15.
[2] 2017. 7 Ways AMP Makes Your Pages Fast. https://www.youtube.com/

watch?v=9Cfxm7cikMY
[3] 2017. Introducing Instant Articles. https://media.fb.com/2015/05/12/

instantarticles/

[4] 2017. Opera Browser Advanced Documentation. http://www.opera.
com/docs/

[5] 2017. SeleniumHQ Browser Automation. http://www.seleniumhq.org/
about/

[6] last accessed: 2024. CITI Program: Research, ethics, and compliance
training. https://about.citiprogram.org/.

[7] HTTP Archive. 2019. Third Parties | 2019 | The Web Almanac by
HTTP Archive. https://almanac.httparchive.org/en/2019/third-parties.
Accessed: 2020-01-2.

[8] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011.
Understanding Website Complexity: Measurements, Metrics, and Im-
plications. In Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference (Berlin, Germany) (IMC ’11). ACM,
NewYork, NY, USA, 313–328. https://doi.org/10.1145/2068816.2068846

[9] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha,
and Vyas Sekar. 2015. Klotski: Reprioritizing Web Content to Improve
User Experience on Mobile Devices.. In NSDI. 439–453.

[10] Moumena Chaqfeh, Rohail Asim, Bedoor AlShebli, Muhammad Fareed
Zaffar, Talal Rahwan, and Yasir Zaki. 2023. Towards a world wide
web without digital inequality. Proceedings of the National Academy of
Sciences 120, 3 (2023), e2212649120.

[11] Moumena Chaqfeh, Russell Coke, Jacinta Hu,WaleedHashmi, Lakshmi
Subramanian, Talal Rahwan, and Yasir Zaki. 2022. Jsanalyzer: A web
developer tool for simplifying mobile web pages through non-critical
javascript elimination. ACM Transactions on theWeb 16, 4 (2022), 1–31.

[12] Moumena Chaqfeh, Muhammad Haseeb, Waleed Hashmi, Patrick In-
shuti, Manesha Ramesh, Matteo Varvello, Fareed Zaffar, Lakshmi Sub-
ramanian, and Yasir Zaki. 2021. To Block or Not to Block: Accelerating
MobileWeb Pages On-The-Fly Through JavaScript Classification. arXiv
preprint arXiv:2106.13764 (2021).

[13] Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian.
2020. JSCleaner: De-Cluttering Mobile Webpages Through JavaScript
Cleanup. In Proceedings of The Web Conference 2020. 763–773.

[14] Josiah Chavula, Nick Feamster, Antoine Bagula, and Hussein Suleman.
2015. Quantifying the Effects of Circuitous Routes on the Latency of Intra-
Africa Internet Traffic: A Study of Research and Education Networks.
64–73. https://doi.org/10.1007/978-3-319-16886-9_7

[15] Jay Chen, David Hutchful, William Thies, and Lakshminarayanan
Subramanian. 2011. Analyzing and Accelerating Web Access in a
School in Peri-urban India. In Proceedings of the 20th International
Conference Companion on World Wide Web (Hyderabad, India) (WWW
’11). ACM, New York, NY, USA, 443–452. https://doi.org/10.1145/
1963192.1963358

[16] Jay Chen, Russell Power, Lakshminarayanan Subramanian, and
Jonathan Ledlie. 2011. Design and Implementation of Contextual
Information Portals. In Proceedings of the 20th International Conference

https://www.prolific.com/
https://www.prolific.com/
https://www.youtube.com/watch?v=9Cfxm7cikMY
https://www.youtube.com/watch?v=9Cfxm7cikMY
https://media.fb.com/2015/05/12/instantarticles/
https://media.fb.com/2015/05/12/instantarticles/
http://www.opera.com/docs/
http://www.opera.com/docs/
http://www.seleniumhq.org/about/
http://www.seleniumhq.org/about/
https://about.citiprogram.org/
https://almanac.httparchive.org/en/2019/third-parties
https://doi.org/10.1145/2068816.2068846
https://doi.org/10.1007/978-3-319-16886-9_7
https://doi.org/10.1145/1963192.1963358
https://doi.org/10.1145/1963192.1963358

Capstone Project 2, Spring 2024, Abu Dhabi, UAE Ayush

Companion on World Wide Web (Hyderabad, India) (WWW ’11). ACM,
NewYork, NY, USA, 453–462. https://doi.org/10.1145/1963192.1963359

[17] Jay Chen, Lakshmi Subramanian, Janardhan Iyengar, and Bryan Ford.
2014. TAQ: Enhancing Fairness and Performance Predictability in
Small Packet Regimes. In Proceedings of the Ninth European Conference
on Computer Systems (Amsterdam, The Netherlands) (EuroSys ’14).
ACM, New York, NY, USA, Article 7, 14 pages. https://doi.org/10.1145/
2592798.2592819

[18] Jay Chen, Lakshminarayanan Subramanian, and Jinyang Li. 2009.
RuralCafe: Web Search in the Rural Developing World. In Proceed-
ings of the 18th International Conference on World Wide Web (Madrid,
Spain) (WWW ’09). ACM, New York, NY, USA, 411–420. https:
//doi.org/10.1145/1526709.1526765

[19] Marshini Chetty, David Haslem, Andrew Baird, Ugochi Ofoha, Bethany
Sumner, and Rebecca Grinter. 2011. Why is My Internet Slow?: Making
Network Speeds Visible. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI
’11). ACM, New York, NY, USA, 1889–1898. https://doi.org/10.1145/
1978942.1979217

[20] Marshini Chetty, Srikanth Sundaresan, Sachit Muckaden, Nick Feam-
ster, and Enrico Calandro. 2013. Measuring Broadband Performance
in South Africa. In Proceedings of the 4th Annual Symposium on Com-
puting for Development (Cape Town, South Africa) (ACM DEV-4 ’13).
ACM, New York, NY, USA, Article 1, 10 pages. https://doi.org/10.1145/
2537052.2537053

[21] Elementor Ltd. [n.d.]. Elementor. https://www.elementor.com. Ac-
cessed: 2024-05-12.

[22] Rodérick Fanou, Pierre Francois, and Emile Aben. 2015. On the Diversity
of Interdomain Routing in Africa. 41–54. https://doi.org/10.1007/978-
3-319-15509-8_4

[23] Rodérick Fanou, Gareth Tyson, Pierre Francois, and Arjuna Sathiasee-
lan. 2016. Pushing the Frontier: Exploring the African Web Ecosystem.
In World Wide Web Conference (WWW).

[24] J Gilmore, N Huysamen, and A Krzesinski. 2007. Mapping the african
internet. In Proceedings Southern African Telecommunication Networks
and Applications Conference (SATNAC), Mauritius.

[25] Arpit Gupta, Matt Calder, Nick Feamster, Marshini Chetty, Enrico
Calandro, and Ethan Katz-Bassett. 2014. Peering at the internet’s
frontier: A first look at isp interconnectivity in Africa. Passive Active
Measurement Conference (PAM) (2014), 204–213.

[26] Sibren Isaacman and Margaret Martonosi. 2009. The C-LINK Sys-
tem for Collaborative Web Usage: A Real-World Deployment in Rural
Nicaragua.

[27] Michael Kende and Bastiaan Quast. 2016. Promoting Content In Africa.
ISOC Report (2016).

[28] Zahir Koradia, Goutham Mannava, Aravindh Raman, Gaurav Aggar-
wal, Vinay Ribeiro, Aaditeshwar Seth, Sebastian Ardon, Anirban Ma-
hanti, and Sipat Triukose. 2013. First Impressions on the State of
Cellular Data Connectivity in India. In Proceedings of the 4th An-
nual Symposium on Computing for Development (Cape Town, South
Africa) (ACM DEV-4 ’13). ACM, New York, NY, USA, Article 3, 10 pages.
https://doi.org/10.1145/2537052.2537064

[29] Jesutofunmi Kupoluyi, Moumena Chaqfeh, Matteo Varvello, Russell
Coke, Waleed Hashmi, Lakshmi Subramanian, and Yasir Zaki. 2022.
Muzeel: Assessing the Impact of JavaScript Dead Code Elimination
on Mobile Web Performance. In Proceedings of the 22nd ACM Inter-
net Measurement Conference (Nice, France) (IMC ’22). Association
for Computing Machinery, New York, NY, USA, 335–348. https:
//doi.org/10.1145/3517745.3561427

[30] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob,
Maciej Korczyński, and Wouter Joosen. 2019. Tranco: A Research-
Oriented Top Sites Ranking Hardened Against Manipulation. In Pro-
ceedings of the 26th Annual Network and Distributed System Security
Symposium (NDSS 2019). https://doi.org/10.14722/ndss.2019.23386

[31] Christian I Mejía-Escobar, Miguel Cazorla, and Ester Martinez-Martin.
2024. Web Pages Dataset. https://doi.org/10.17605/OSF.IO/7GHD2.
https://doi.org/10.17605/OSF.IO/7GHD2

[32] Bezhan Mukhidinov. 2020. List of Top 1000 Websites. https://gist.
github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825f61.

[33] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan.
2016. Polaris: Faster Page Loads Using Fine-grained Dependency
Tracking.. In NSDI. 123–136.

[34] William Thies, Janelle Prevost, Tazeen Mahtab, Genevieve T. Cuevas,
Saad Shakhshir, Alexandro Artola, Ro Artola, Binh D. Vo, Yuliya Lit-
vak, Sheldon Chan, Sid Henderson, Mark Halsey, Libby Levison, and
Saman Amarasinghe. 2002. Searching the World Wide Web in Low-
Connectivity Communities.

[35] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. 2013. Demystifying Page Load Performance with
WProf. In Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation (Lombard, IL) (nsdi’13). USENIX
Association, Berkeley, CA, USA, 473–486. http://dl.acm.org/citation.
cfm?id=2482626.2482671

[36] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016.
Speeding up Web Page Loads with Shandian.. In NSDI. 109–122.

[37] Webflow, Inc. [n.d.]. Webflow. https://www.webflow.com. Accessed:
2024-05-12.

[38] Wix.com Ltd. [n.d.]. Wix. https://www.wix.com. Accessed: 2024-05-12.
[39] Yasir Zaki, Jay Chen, Thomas Pötsch, Talal Ahmad, and Lakshmi-

narayanan Subramanian. 2014. Dissecting Web Latency in Ghana. In
Proc. of the ACM Internet Measurement Conference (IMC). Vancouver,
BC, Canada.

A ETHICS
An institutional review board (IRB) approval is granted to
conduct the user study, and the authors who conducted the
study are CITI [6] certified.

B SURVEY QUESTIONNAIRE
Tables 6, 7, 8, and 9 show the questions asked in the ques-
tionnaire with the available answer options.

https://doi.org/10.1145/1963192.1963359
https://doi.org/10.1145/2592798.2592819
https://doi.org/10.1145/2592798.2592819
https://doi.org/10.1145/1526709.1526765
https://doi.org/10.1145/1526709.1526765
https://doi.org/10.1145/1978942.1979217
https://doi.org/10.1145/1978942.1979217
https://doi.org/10.1145/2537052.2537053
https://doi.org/10.1145/2537052.2537053
https://www.elementor.com
https://doi.org/10.1007/978-3-319-15509-8_4
https://doi.org/10.1007/978-3-319-15509-8_4
https://doi.org/10.1145/2537052.2537064
https://doi.org/10.1145/3517745.3561427
https://doi.org/10.1145/3517745.3561427
https://doi.org/10.14722/ndss.2019.23386
https://doi.org/10.17605/OSF.IO/7GHD2
https://doi.org/10.17605/OSF.IO/7GHD2
https://gist.github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825f61
https://gist.github.com/bejaneps/ba8d8eed85b0c289a05c750b3d825f61
http://dl.acm.org/citation.cfm?id=2482626.2482671
http://dl.acm.org/citation.cfm?id=2482626.2482671
https://www.webflow.com
https://www.wix.com

Breaking Down Complexity: MAML’s Impact on Web Page Optimization in Developing Regions Capstone Project 2, Spring 2024, Abu Dhabi, UAE

Question Options
How much web development experience do you have? A. None

B. Beginner (understand the basics, can use templates and
customize them)
C. Intermediate (can develop pages from scratch and write
limited JavaScript code for interactivity)
D. Advanced (have developed web pages from scratch us-
ing modern web development technologies and can write
JavaScript code from scratch)

How important is page load time for you when developing
web pages? Rate on a scale from 0 to 5.

0 - Not at all important

5 - Extremely Important
Table 6: Pre-competition survey questionnaire

Question Options
How would you rate the learning curve of the MAML Editor
on a scale from 0 to 10?

0 - Extremely Hard

10 - Very easy to learn
Rate MAML Editor’s web interface on a scale from 0 to 10. 0 - Terrible

10 - Excellent
Rate the usability of the MAML editor on a scale from 0 to
10.

0 - Unusable

10 - Easy to use
Table 7: Post-competition survey questionnaire

Question Options
Rate the visual similarity of the two pages on a scale from 0
to 10.

0 - Not similar at all

5 - Moderately similar
10 - Identical

Rate the visual impact of the missing content on the user
experience on a scale from 0 to 10.

0 - No impact

5 - Moderate impact
10 - Extreme impact

Rate your willingness to sacrifice missing content for a sig-
nificant increase in loading speed.

0 - Not willing at all

5 - Moderately willing
10 - Extremely willing

Table 8: Content similarity study questionnaire on Prolific

Capstone Project 2, Spring 2024, Abu Dhabi, UAE Ayush

Question Options
Rate the functional similarity of the two pages on a scale
from 0 to 10.

0 - Not similar at all

5 - Moderately similar
10 - Identical

Rate the functional impact of the missing content on the user
experience on a scale from 0 to 10.

0 - No impact

5 - Moderate impact
10 - Extreme impact

Table 9: Functional similarity study questionnaire for manual inspection

Breaking Down Complexity: MAML’s Impact on Web Page Optimization in Developing Regions Capstone Project 2, Spring 2024, Abu Dhabi, UAE

(a) Original page (b) MAML page

Figure 9: Original page vs MAML-converted page of ifttt.com

Capstone Project 2, Spring 2024, Abu Dhabi, UAE Ayush

(a) Original page

(b) MAML page

Figure 10: Original page vs MAML-converted page of flickr.com

Breaking Down Complexity: MAML’s Impact on Web Page Optimization in Developing Regions Capstone Project 2, Spring 2024, Abu Dhabi, UAE

(a) Original page (b) MAML page

Figure 11: Original page vs MAML-converted page of doctorswithoutborders.org

	Abstract
	1 Introduction
	2 Background And Related Work
	2.1 Poor Web Performance in Developing Regions
	2.2 Existing Solutions And Related Work
	2.3 Developing regions related work

	3 MAML Design
	3.1 Data Structure
	3.2 Supported Elements
	3.3 Properties of a MAML Element
	3.4 MAMLScript

	4 MAML Editor
	4.1 User Workflow
	4.2 Implementation

	5 Evaluation
	5.1 Competition Setup
	5.2 Web Pages Selection Criteria
	5.3 Pre and Post Competition Survey
	5.4 Quantitative Evaluation
	5.5 Qualitative Evaluation
	5.6 Survey Results

	6 Conclusion
	References
	A Ethics
	B Survey questionnaire

