
ThorJS: A Framework for Client-Side JavaScript
Optimization
Vladimir Sharkovski
Computer Science, NYUAD

vs2599@nyu.edu

Advised by: Yasir Zaki

ABSTRACT
JavaScript (JS) bloat is a significant factor in slow web perfor-
mance, with many websites delivering large JS bundles that
contain code rarely executed. While existing solutions for
JS “dead code” elimination can be effective, they all require
server-side support, which limits adoption and contributes
to web ossification. In this capstone paper, we introduce
ThorJS, an innovative client-side technique for JS dead code
elimination. ThorJS leverages HTTP range queries, allowing
browsers to fetch only the essential segments of JS code re-
quired for specific user interactions. This method requires no
server-side participation, enabling seamless adoption across
diverse websites. To assess the feasibility of this approach,
we first analyze the top onemillion websites, identifying near
one million unique domains serving JS; for each domain we
evaluate their support for HTTP range queries, including
single and multi-range requests. We then implement ThorJS
in a lightweight, Chromium-based browser called Thorium
(which inspired the name ThorJS) and benchmark eleven
representative websites to evaluate ThorJS improvements in
user browsing experience and resource efficiency.

KEYWORDS
range requests, javascript, web browsers, internet

Reference Format:
Vladimir Sharkovski. 2024. ThorJS: A Framework for Client-Side
JavaScript Optimization. In NYUAD Capstone Project 1 Reports, Fall
2024, Abu Dhabi, UAE. 7 pages.

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 1, Fall 2024, Abu Dhabi, UAE
© 2024 New York University Abu Dhabi.

1 INTRODUCTION
JavaScript (JS) has become the backbone of modern web
applications, enabling rich interactivity and complex client-
side functionalities. Many websites include large, monolithic
JS files, even though only a fraction of the code might be nec-
essary. This pervasive JS bloat leads to high CPU and battery
usage, and slow page load times, particularly affecting users
on mobile devices or slow networks. Despite advances in JS
minification [5, 8, 14] and dead code elimination [2, 12, 15–
18], these solutions are limited in scope and require active
server-side participation, creating a barrier to adoption.

This paper introduces ThorJS, a novel client-side method
for JS dead code elimination, which avoids the need for
server-side participation. ThorJS’s intuition is to leverage
HTTP range queries to enable clients to request only the es-
sential portions of JS code required for a specific interaction.
This method allows users to load minimal JS tailored to their
needs, significantly reducing the overhead of downloading
and executing unnecessary code. By relying solely on client-
initiated code requests, ThorJS bypasses the need for servers
to opt in or adjust configurations, reducing Web ossification.
First we investigate the support of HTTP range queries

across JS serving domains in the Internet. We conduct a
comprehensive analysis of the top one million websites –as
per the HTTP archive on 10/01/2024 [3]– from which we
extract roughly one million unique domains that serve JS
content. We then test the support of HTTP range queries,
both single and multi-ranges, requesting a JS file per each
serving domain. We find that support is widespread, with a
quarter of domains supporting multi-range and single-range
queries and another quarter supporting only single-range
queries.
Then, we implement ThorJS within Thorium, a simpli-

fied Chromium-based browser. We benchmark ThorJS on
11 websites, where we measure key performance indicators,
including Speed Index and Page Load Time. We find that
our implementation of ThorJS instead has a negative perfor-
mance impact, and consider possible reasons for that.



Capstone Project 1, Fall 2024, Abu Dhabi, UAE Sharkovski

2 BACKGROUND AND RELATEDWORK
JavaScript (JS) is one of the key contributors to (high) web-
page load times, making webpages feel sluggish especially on
low-end devices [20]. With the goal of speeding up and com-
pressing webpages, the research community has invested
significant efforts in JS dead code elimination. Lacuna [17]
pioneered JS dead code elimination at a functional level, com-
bining static and dynamic analysis within a generic frame-
work. Two recent methods [12, 18] also focus on JS dead code
elimination through dynamic analysis. [18] uses unit tests
to identify unused code, while [12] relies on real user moni-
toring (RUM) [2] to track user interactions. WebMedic [16]
approaches dead code elimination by removing low-priority
functions to reduce memory usage on low-end devices. This
strategy yields an average 50% memory savings but compro-
mises up to 40% of page functionality. Muzeel [15] improves
upon these works by handling the dynamic nature of JS
while introducing user-page interaction, achieving high vi-
sual appearance of webpages and interactive functionality
(similarity score of above 90%).

Despite their differences, all the above approaches share
one common limitation: they only work on the server-side.
That is, they require existing servers to adopt them and di-
rectly serve more optimized JS code. By contrast, ThorJS
achieves dead code elimination without any server side sup-
port by directly requesting only the portions of required JS
code. This is realized via HTTP range requests, which allow
clients to request specific parts (ranges) of a resource rather
than downloading the entire file. By including a “Range”
header in the HTTP request, a client can specify which byte
ranges it needs, such as “Range: bytes=0-1024”, to retrieve
only the first 1 KB of a file. If the server supports range re-
quests, it will respond with a “206 Partial Content” status
and send back only the requested range, rather than the
entire file. Multi-range requests allow clients to ask for mul-
tiple, non-contiguous segments in a single request, such as
“Range: bytes=0-1024, 2048-3072”, enabling efficient access
to different parts of a file.

No previous work has yet investigated the current support
for HTTP range requests in the Internet. While all major
server engines (Apache, Nginx, etc.) support HTTP range re-
quests, system administrators might choose to disable them,
despite the lack of clear incentive to disable such feature to
the best of our knowledge.

3 IDEA VALIDATION
ThorJS is founded on the idea that HTTP range requests can
be used to enable browsers to only request essential portions
of JS code required for a specific interaction. In this section,
we validate the presence or absence of support of HTTP

range queries across JavaScript (JS) serving domains in the
Internet.

3.1 Range Request Support
Methodology. We use BigQuery to create a dataset from
the HTTP Archive [3], containing the URLs of all JS files
embedded in pages within the top one million sites by pop-
ularity. This dataset is generated on October 1, 2024, and
spans 61,466,389 individual URLs from 999,733 unique JS-
serving domains. On average, each domain hosts 61.6 unique
JS files/URLs.
Our next step is to evaluate each domain for support of

HTTPmulti-range and single-range requests.We select a ran-
dom JS URL from each domain cluster and send a HEAD re-
quest specifying a multi-range (e.g. bytes 0-1 and 10-11). The
response headers are then analyzed to check for multi-range
support, indicated by the presence of an “Accept-Ranges:
bytes” header. If multi-range support is absent, we proceed
to test single-range requests before moving to the next do-
main. An assumption derived from smaller-scale testing is
that if a domain supports multi-range requests, it already
supports single-range requests.

The evaluation was done from the NYUAD campus. How-
ever, given the prevalence of Content Delivery Networks
(CDNs) among these domains, it would be beneficial to emu-
late requests from varied geographic locations, increasing
the chance of testing different CDN servers, which might
exhibit different behaviors. This can be achieved by changing
the public IP address of our testing client with each complete
cycle of 999,733 domains, for example with a Virtual Private
Network (VPN) 1.

Executing the evaluation took 24 hours, about 12 seconds
per domain. A timeout of 10 seconds was used for requests.
A single machine with a single testing client was used. The
testing client is multi-threaded, simultaneously testing 32
different domains at any moment; 32 threads were found to
perform better despite the machine being used having 64
logical cores.
Results.We find that of the 997,733 domains, 229,725 (23.0%)
supportmulti-range requests and single-range requests, 233,642
(23.4%) support only single-range requests, and 534,366 (53.6%)
support neither. With nearly half of the domains support-
ing either kind of range requests, we see that ThorJS can be
applied to a large fraction of the internet being visited today.

4 THORJS
This section describes ThorJS, a client side approach to JS
dead code elimination. At a high level (see Figure 1) ThorJS

1Unfortunately, this was not attempted for the capstone due to time and
resource constraints.



ThorJS: A Framework for Client-Side JavaScript Optimization Capstone Project 1, Fall 2024, Abu Dhabi, UAE

Figure 1: ThorJS’s architecture and workflow.

consists of a modified Web browser which relies on HTTP
range requests to retrieve only the portion of JS files needed,
thus achieving code elimination (2). This information, i.e.
required ranges per JS file and domain, is offered by an oracle
(1). The oracle’s role is to run classic JS dead code elimination
techniques against a set of popular websites (5), in order to
maintain up-to-date information of which code portions can
be suppressed, in the form of range headers.

4.1 Oracle
Although the oracle could also be implemented in the browser,
we instead opt for it to be operated by an Internet Service
Provider (ISP). While this approach may introduce some pri-
vacy considerations, as discussed below, it is an overall more
efficient approach as each browser does not need to re-run
the same dead code elimination algorithm when visiting the
same website. Further, even the first visit to a website can
already leverage the benefits of JS dead code elimination.
In the example shown in Figure 1, the oracle is operated

by an ISP in collaboration with the ISP-provided Domain
Name System (DNS) resolver. This approach offers two key
advantages. First, DNS inherently collects statistics on popu-
lar websites within a given network or geographic region.
Second, the oracle does not introduce any additional privacy
concerns beyond those already present in DNS traffic. Alter-
natively, a centralized oracle model is also feasible, similar
to the structure of cloud DNS providers like Google [13] and
Cloudflare [9].
Accordingly, DNS traffic (3) is used to drive the oracle

(4) with information on which websites are currently pop-
ular among the users served by a given DNS, i.e. a given

region. The oracle runs one or several JS dead code elimi-
nation strategies (5), e.g. Muzeel or Lacuna, and populates
a “range file”, which contains for each known JS URL the
range headers to be used, if any. This file is maintained over
time with a proper versioning system so that only partial in-
crements/variations need to be sent to a requesting browser
(1).

4.2 Browser Implementation
Thorium [11] is an open-source Chromium-basedweb browser
aiming to provide performance improvements over vanilla
Chromium. We decided to implement ThorJS in Thorium
due to their helpful documentation in terms of set-up, devel-
opment, and building. However, our implementation may
be applied directly to Chromium or other Chromium forks,
and we shall refer to Chromium here as an umbrella term
for these.
Range File Management. At startup, and at hourly fre-
quency, the browser communicates with the oracle to check
whether a new version of the range file should be down-
loaded. In a more comprehensive implementation, given that
small changes to this file are expected, delta updates may
be used together with existing caching mechanisms in the
browser.

It is necessary to decidewhere to store and how to store the
range file in the browser, and how to access it when requests
are made. Depending on where the range file is stored, load-
ing a website may initiate many requests for JS files, which
all necessitate reading the range file. This is not straightfor-
ward because Chromium has a multi-process architecture,
with one browser process and one or more rendering pro-
cesses (renderers) [7]. The browser process is always alive,
while renderers may be created or killed as tabs are opened
or closed, with one renderer per tab.

We considered two potential solutions. The first is to load
the range file in the browser’s memory and have renderers
communicate with the browser through inter-process com-
munication (IPC). Whenever a website is loaded, for each JS
file, the renderer queries for potential range data for that file.
While this leads to dozens of IPCmessages per page load, IPC
messages are fast in modern systems and would probably
not be the bottleneck in the implementation. Moreover, it
is memory-efficient because range data is stored only once.
An alternative approach is to replicate the range data and
keep it in-memory within each renderer. This increases the
memory footprint of the browser, but does not introduce
many IPC messages when loading webpages.
While we believe that the first solution is more sensible,

it was difficult to implement in time for the capstone, so
we opted for the second one, visualized in Figure 2. In the



Capstone Project 1, Fall 2024, Abu Dhabi, UAE Sharkovski

Figure 2: Workflow associated with the range file re-
trieval and processing.

browser process, an entity called the RangeFileService han-
dles the retrieval of the range file, either by sending a GET
request to the oracle or by accessing it from the browser
cache. Next, it sends the file to all RangeStores through IPC;
there is one RangeStore in the browser process and one in
each renderer, and the file is also sent to any renderers cre-
ated in the future. Next, each RangeStore parses the file,
creating an in-memory mapping of domain and file URL to
Range header 2.
Request Interception. To intercept requests, we use a func-
tionality provided by Chromium called throttles, which can
intercept HTTP requests at different points in their life-
time [1]. Chromium uses many throttles for its features,
instances of which are created once per request. We im-
plement our own throttle, which intercepts requests at two
points. Before the request is sent, the throttle attempts to
convert it into a multipart byte-range request 3. Afterwards,
when the response starts being received, depending on the
response code, as discussed below, the throttle “intercepts”
the response body and forwards only the necessary parts,
using the byte ranges knowledge. By forwarding only the
necessary parts of the response body, we reduce the load on
the JavaScript engine afterwards.
Figure 3 summarizes the throttle operations, assuming

a RangeStore has been initialized in the process. For each
request, after Chromium initializes its own existing throttles
and adds them to a list, we add our own throttle at the end.
This attempts to avoid unexpected behavior as other throttles
may also bemodifying the request.When the request is about
to be sent, our throttle ensures that the request is a GET, and
that it is not already a range request, i.e. it does not have
the “Range” header 4. The throttle determines the domain
2A similar option would have been to parse the file once and send the
in-memory mapping through IPC, but the parsing is simple, and it was
not straightforward to send the data structure through the Chromium IPC
system.
3This can only be done when the domain supports multipart requests, which
we know from the range file. If the domain only supported single-part range
requests, another useful functionality could be applied, where the request
is split into multiple single-part range requests; however, this was not
implemented in the capstone due to time constraints.
4It would also be beneficial to filter for only JS files at this point, but there
is not enough information to know whether the request is for a JS file.

Figure 3: Workflow associated with intercepted JS re-
quests and responses.

hosting the JS being requested, and queries the RangeStore
to find the Range header associated with this resource. If
the header does not exist, we stop intercepting and let the
request continue unmodified. Otherwise, the request is sent
to the network.
Response Interception.As a response starts being received,
the throttle is notified. The throttle only has access to the
response header at this point, not the body. The throttle takes
action based on the response code; if the response code is
200 (OK/Success), the whole JS file is being returned despite
the throttle having converted the request to a multipart byte-
range request 5. This suggests lack of range request support
at the server, thus a mismatch with respect to the informa-
tion contained in the RangeStore 6. The throttle initializes
a helper object to intercept the response body and forward
only the relevant parts, thus still realizing local benefits from
partial JS usage (but not download). How this process inter-
acts with the browser caches is discussed in the next section.
If the response code is 206 (Partial Content), the range

request has been respected. Due to how range requests are
specified, the response body will have additional metadata
inserted between the parts requested by the ranges — see
Figure 4. To handle this, the throttle creates another helper
object which will parse the response body, removing the
metadata and forwarding to the renderer only the file content
as specified with the byte ranges.
Cache Interaction. It is important to consider how our
implementation interacts with the browser’s caching mecha-
nisms. Chromium has an HTTP Cache module which deter-
mines whether to serve HTTP requests from the lower-level
disk cache or from the network [6]. There is also a different

Methods such as checking if the URL ends with a .js would disqualify many
JS files, and we do not know the Content-Type header of the future response.
5This is an automatic fallback mechanism observed by testing; we did not
encounter situations where a “not supported” response was returned.
6In a more comprehensive implementation, this information may be propa-
gated back to the oracle as it may be useful for updating the range file.



ThorJS: A Framework for Client-Side JavaScript Optimization Capstone Project 1, Fall 2024, Abu Dhabi, UAE

Figure 4: An example response for a multipart byte-
range request. The parts which were requested are in
black, while the additional metadata is in blue.

in-memory cache in each renderer. Our throttle sits in the
network stack and interacts with the HTTP cache, while the
in-memory cache exists at a higher level above the network
stack. Therefore the in-memory cache was expected to per-
form as normal, which testing confirmed. Now we discuss
the throttle’s interactions with the HTTP cache.
From our tests, we found that modifying requests for JS

files, as we did with our throttle, led the requests to never be
served from the disk cache, but to instead be sent through the
network. A possible reason is the cache’s sparse entries mech-
anism. Besides normal entries which store entire resources,
the cache supports sparse entries, which allow storing only
parts of resources, in cases where the whole resource has not
been requested. We assume sparse entries are used for any re-
quests our throttle intercepts. However, the browser already
uses byte-range requests as a mechanism to create sparse
entries. Therefore, as our throttle is also converting requests
to byte-range requests at an unexpected point in the request
workflow (from the unmodified browser’s perspective), this
may be causing the cache to behave unexpectedly. For exam-
ple, our requests may be failing cache validation, leading to
the browser always issuing network requests instead.
For the capstone course, due to time constraints and the

complicated nature of the HTTP cache module, we were
unable to determine the exact reason for why our modified
requests were not being served from the disk cache, as well
as modify our implementation to address that. Therefore
our performance evaluation in Section 5 disabled the HTTP
cache.

5 PERFORMANCE EVALUATION
This section benchmarks ThorJS with respect to user QoE
measuredwithweb performancemetrics.We focus onMuzeel [15]
which is, to the best of our knowledge, the most advanced
solution for JS deadcode elimination. Nevertheless, ThorJS
is a generic approach and can be used with any existing or
future solutions.

5.1 Methodology
We start by identifying a representative set of testing web-
pages. Using the dataset described in Section 3, we obtain a
random sample of 11 webpages 7. We then run Muzeel on
these webpages to identify the byte ranges for all JS files,
and use Muzeel’s output data to construct the range file.

We use webpagetest [21] to automate the loading of these
webpages via a modified Thorium browser with ThorJS capa-
bilites. We clear the browser cache between each load for rea-
sons discussed in Section 4.2. Each webpage is loaded three
times using the following network configurations: 1) Slow:
20Mbps downlink/uplink rateswith 100ms RTT, 2)Medium:
50 Mbps downlink/uplink rates with 50 ms RTT, and 3) Fast:
100 Mbps downlink/uplink rates with 20 ms RTT. A low-end
mobile device (Xiaomi Redmi Go with a Quad-core 1.4 GHz
CPU, and 1GB RAM) is used to load each webpage using the
following configurations 8: Classic where ThorJS is simply
disabled and thus legacy Thorium is used; Multi which only
leverage multi-range HTTP requests; and Local where regu-
lar JS code is requested, but local splitting is used to forward
only the amount of JS code required.

As web performance metrics, we measure First Contentful
Paint (FCP) [19], which is a user-centric metric measuring
perceived load speed as it marks the first point in the page
load timeline. Next, Speed Index (SI) [4] which measures
how quickly a website’s content is visually displayed during
load. Finally, Page Load Time (PLT) [10] which measures the
amount of time it takes for a webpage to fully load.

5.2 Results
Tables 1, 2, and 3 show the results for the average FCP, SI,
and PLT metrics across all pages, when varying the network
and browser configurations. The results generally show a
performance decrease (instead of an increase) for all metrics
when using the Local or Multi configuration of ThorJS. For
FCP, the most significant improvements are seen over Slow
networks, where Local and Multi respectively provide a 27%
and 12% improvement over Classic. For SI, only Local for

7We would have opted for a larger number of webpages, but this was not
possible for the capstone due to time constraints and the fact that executing
Muzeel was slow with our resources.
8Targeting desktop would also be useful, but primarily focusing on mobile
devices is in accordance with our motivation as described in Section 1.



Capstone Project 1, Fall 2024, Abu Dhabi, UAE Sharkovski

Classic Local Multi
Slow 5.44 3.99 (-26.6%) 4.77 (-12.3%)

Medium 4.55 4.55 (-0.1%) 4.22 (-7.4%)
Fast 4.06 4.48 (+10.3%) 6.66 (+64.1%)

Table 1: Results for First Contentful Paint. Cells are
average FCP values, in seconds. The numbers in paren-
theses are comparisons to the baseline Classic.

Classic Local Multi
Slow 11.50 11.39 (-1.0%) 11.71 (+1.8%)

Medium 12.31 10.58 (-14.0%) 11.78 (-4.2%)
Fast 9.93 10.34 (+4.1%) 16.66 (+67.7%)

Table 2: Results for Speed Index. Cells are average SI
values, in seconds. The numbers in parentheses are
comparisons to the baseline Classic.

Classic Local Multi
Slow 28.25 31.08 (+10.0%) 32.13 (+13.7%)

Medium 27.02 28.18 (+4.3%) 32.11 (+18.8%)
Fast 26.89 26.21 (-2.5%) 47.74 (+77.6%)

Table 3: Results for Page Load Time. Cells are average
PLT values, in seconds. The numbers in parentheses
are comparisons to the baseline Classic.

Medium networks shows a 14% improvement, and for PLT,
only Local for Fast networks shows a 2.5% improvement. For
all other cases of FCP, SI, and PLT, the Classic (unmodified)
browser performs best. Another noticeable result is that
Multi performs very badly over Fast networks, being more
than 64% slower than Classic on all metrics.

For the cases where there is improvement from Local and
Multi, it is possible that ThorJS is performing as expected,
in that both Local and Multi are passing less JS code to the
browser’s JavaScript engine, and this ultimately speeds up
the loading. However, these results are not statistically sig-
nificant, as only 11 websites were tested. In most cases, the
performance of Local and Multi is worse than Classic.
A possible reason for Local’s worse performance is with

how it is implemented (see Section 4.2). In the browser, the
throttle is introduced as an additional component in the
middle of the flow of execution of requests for JS files. The
throttle forwards only parts of the response body to the rest
of the workflow, but this forwarding necessitates additional
copying of the response body data: a full copy for the throttle
to receive it and then additional copies of each part which
will be forwarded. These copies of data, which require un-
derlying memory allocations and copying, together with
the mechanisms Chromium to redirect response data to our

throttle, may be slowing down the performance, especially
for large files. To mitigate this performance impact, it might
be necessary to implement this functionality in a better way,
possibly deeper in the browser’s network stack, as well as to
modify other browser components in accordance with the
optimization.
The worse performance of Multi can also be caused by

similar reasons to the one of Local. In this case, the imple-
mentation is slower by necessity, as Multi has to parse the
contents of the response body before forwarding certain
parts, while Local immediately knows the byte ranges to
forward without having to do any parsing, due to having
access to the Range header. However, there is another pos-
sible reason why Multi is performing badly, especially in
the case of fast networks. Multi sends multipart byte-range
requests, which ask the JS server (see Figure 1) to process
the JS resource on its own end before sending a response.
This additional processing may take an unexpectedly large
amount of time compared to the case of Classic, where the
JS server simply returns the JS file. Moreover, in the case
of Multi, the byte range requests are bypassing any type of
caching outside the browser, such as server-side caching and
CDNs. All these effects are most clearly visible over a fast
network, as less time is spent over the network, emphasizing
the performance of the browser and JS server.

6 CONCLUSION
In this capstone paper, we introduced ThorJS, a client-side
approach for JS dead code elimination that leverages HTTP
range queries to fetch only the necessary portions of JS files
when loading websites. ThorJS is designed to avoid server-
side dependencies in order to enable easier adoption across
the internet and to avoid web ossification.

Our analysis of the top one million websites revealed that
HTTP range query support is prevalent, with approximately
50% of JS-serving domains supporting single or multi-range
queries. This highlights that ThorJS may be a useful client-
side solution for JS optimization. However, our performance
evaluation of ThorJS led to mixed results. While isolated
cases showed minuscule improvements in metrics such as
First Contentful Paint, Speed Index, and Page Load Time,
in most cases, ThorJS performed worse than an unmodified
browser.

We then discuss possible reasons for ThorJS’s worse-than-
expected performance, namely limitations in the browser
implementation and the possible effect of bypassing caching
mechanisms outside the browser. We also emphasize how
the results of the evaluation should not be taken for granted,
as only a very small number of websites could be tested.

Despite the current limitations, ThorJS opens avenues for
addressing JS bloat from the client side. Future work should



ThorJS: A Framework for Client-Side JavaScript Optimization Capstone Project 1, Fall 2024, Abu Dhabi, UAE

focus on a more comprehensive and efficient browser imple-
mentation, understanding the effects of all types of caches
–inside the browser and outside– on range requests, and exe-
cuting a performance evaluation with a larger scope. These
improvements may lead to innovative ways to handle JS bloat
and its effects on web performance and user experience.

REFERENCES
[1] John Abd-El-Malek. 2016. Network Service in

Chrome. https://docs.google.com/document/d/
1wAHLw9h7gGuqJNCgG1mP1BmLtCGfZ2pys-PdZQ1vg7M/edit.
Accessed: 2024-12-03.

[2] Akamai. 2020. RUM JavaScript. https://learn.akamai.com/en-
us/webhelp/ion/real-user-monitoring-guide/GUID-E6BE104B-2EB6-
463B-A0C8-7A3D0E746446.html.

[3] HTTP Archive. 2024. HTTP Archive Dataset. https://httparchive.org/.
Hosted on Google BigQuery. Accessed: 2024-11-15.

[4] Cody Arsenault. [n.d.]. Speed Index Explained - Another Way to
Measure Web Performance. https://www.keycdn.com/blog/speed-
index.

[5] Mihai Bazon. 2012. UglifyJS. http://lisperator.net/uglifyjs/. Accessed:
2020-05-01.

[6] Chromium. 2024. HTTP Cache Documentation. https:
//www.chromium.org/developers/design-documents/network-
stack/http-cache/. Accessed: 2024-12-04.

[7] Chromium. 2024. Multi-process Architecture. https://www.chromium.
org/developers/design-documents/multi-process-architecture/. Ac-
cessed: 2024-12-06.

[8] CircleCell. 2011. JSCompress - The JavaScript Compression Tool.
https://jscompress.com/. Accessed: 2020-05-01.

[9] Cloudflare. 2024. Cloudflare DNS. https://www.cloudflare.com/
learning/dns/what-is-1.1.1.1. Accessed: 2024-12-16.

[10] MDN Web Docs. 2024. Page load time. https://developer.mozilla.org/
en-US/docs/Glossary/Page_load_time. Accessed: 2024-12-06.

[11] Alexander Frick. 2024. Thorium Browser. https://thorium.rocks/.
Accessed: 2024-12-03.

[12] Utkarsh Goel and Moritz Steiner. 2020. System to Identify and Elide
Superfluous JavaScript Code for Faster Webpage Loads. arXiv preprint
arXiv:2003.07396 (2020).

[13] Google. 2024. Google Public DNS. https://developers.google.com/
speed/public-dns. Accessed: 2024-12-16.

[14] Kayce Basques. 2018. Find Unused JavaScript And CSS With The Cov-
erage Tab. https://developer.chrome.com/docs/devtools/coverage/.

[15] Jesutofunmi Kupoluyi, Moumena Chaqfeh, Matteo Varvello, Russell
Coke, Waleed Hashmi, Lakshmi Subramanian, and Yasir Zaki. 2022.
Muzeel: Assessing the impact of JavaScript dead code elimination
on mobile web performance. In Proceedings of the 22nd ACM Internet
Measurement Conference. 335–348.

[16] Usama Naseer, Theophilus A Benson, and Ravi Netravali. 2021.
WebMedic: Disentangling the Memory-Functionality Tension for the
Next Billion Mobile Web Users. In Proceedings of the 22nd International
Workshop on Mobile Computing Systems and Applications. 71–77.

[17] Niels Groot Obbink, Ivano Malavolta, Gian Luca Scoccia, and Patri-
cia Lago. 2018. An extensible approach for taming the challenges
of JavaScript dead code elimination. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER).
IEEE, 291–401.

[18] Hernán Ceferino Vázquez, Alexandre Bergel, S Vidal, JA Díaz Pace, and
Claudia Marcos. 2019. Slimming javascript applications: An approach
for removing unused functions from javascript libraries. Information

and Software Technology 107 (2019), 18–29.
[19] Philip Walton. 2024. First Contentful Paint (FCP). https://web.dev/

articles/fcp. Accessed: 2024-12-06.
[20] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,

and David Wetherall. 2013. Demystifying Page Load Performance
with WProf. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). USENIX,
Lombard, IL, 473–485. https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/wang_xiao

[21] WebPageTest. 2024. WebPageTest. https://www.webpagetest.org/.
Accessed: 2024-12-06.

https://docs.google.com/document/d/1wAHLw9h7gGuqJNCgG1mP1BmLtCGfZ2pys-PdZQ1vg7M/edit
https://docs.google.com/document/d/1wAHLw9h7gGuqJNCgG1mP1BmLtCGfZ2pys-PdZQ1vg7M/edit
https://learn.akamai.com/en-us/webhelp/ion/real-user-monitoring-guide/GUID-E6BE104B-2EB6-463B-A0C8-7A3D0E746446.html
https://learn.akamai.com/en-us/webhelp/ion/real-user-monitoring-guide/GUID-E6BE104B-2EB6-463B-A0C8-7A3D0E746446.html
https://learn.akamai.com/en-us/webhelp/ion/real-user-monitoring-guide/GUID-E6BE104B-2EB6-463B-A0C8-7A3D0E746446.html
https://httparchive.org/
https://www.keycdn.com/blog/speed-index
https://www.keycdn.com/blog/speed-index
http://lisperator.net/uglifyjs/
https://www.chromium.org/developers/design-documents/network-stack/http-cache/
https://www.chromium.org/developers/design-documents/network-stack/http-cache/
https://www.chromium.org/developers/design-documents/network-stack/http-cache/
https://www.chromium.org/developers/design-documents/multi-process-architecture/
https://www.chromium.org/developers/design-documents/multi-process-architecture/
https://jscompress.com/
https://www.cloudflare.com/learning/dns/what-is-1.1.1.1
https://www.cloudflare.com/learning/dns/what-is-1.1.1.1
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://thorium.rocks/
https://developers.google.com/speed/public-dns
https://developers.google.com/speed/public-dns
https://developer.chrome.com/docs/devtools/coverage/
https://web.dev/articles/fcp
https://web.dev/articles/fcp
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.webpagetest.org/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Idea Validation
	3.1 Range Request Support

	4 ThorJS
	4.1 Oracle
	4.2 Browser Implementation

	5 Performance Evaluation
	5.1 Methodology
	5.2 Results

	6 Conclusion
	References

