
Understand the Impact of Infrequently Used
Interactions in Webpages with VMuzeel

Linh Tran
Computer Science, NYUAD

lkt4560@nyu.edu

Advised by: Yasir Zaki

ABSTRACT
The long-term issue of dead codes, which is defined as un-
used codes in webpages, is addressed by various solutions
such as Muzeel and Lacuna. However, while these tools have
successfully eliminated the majority of dead codes in web
applications, leading to significant improvements in page
performance, not all remaining codes are strictly necessary
for users. Such extraneous codes, which bloat the webpage
similarly to dead codes, could be eradicated to further en-
hance the page load time. Yet, fault identification of the infre-
quently used codes can lead to a reduction in page usability.
This paper aims to correctly identify the less frequently used
codes in terms of user interactivity using VMuzeel as an
extension of Muzeel, which was originally developed to only
eliminate dead codes. The identification of infrequently used
code can be carried out by utilizing a computer vision and
large language model to identify correctly the possible inter-
active elements on a website. This comprehensive approach
aims to provide insights into optimizing web page perfor-
mance utilizing the computer vision and LLM models to
maintain user experience by efficiently managing function
usage throughout the browsing session.

KEYWORDS
computer vision, large language model, Muzeel, network
optimization
Reference Format:
Linh Tran. 2025. Understand the Impact of Infrequently Used Inter-
actions in Webpages with VMuzeel. In NYUAD Capstone Project 2
Reports, Spring 2025, Abu Dhabi, UAE. 8 pages.

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 2, Spring 2025, Abu Dhabi, UAE
© 2025 New York University Abu Dhabi.

1 INTRODUCTION
Every webpage has different functionalities that allow users
to perform various interactions. Not all of which will be
executed by users, either because they are invisible on the
webpage or because they require complex interactions from
users. Hence, these potentially infrequently used codes are
wastefully downloaded from the server, reducing page per-
formance generally. To target this problem, this paper aims
to 1) effectively eliminate infrequently used codes by identi-
fying the infrequently used interactions on web applications,
and 2) analyze the effectiveness of this elimination on the
general performance of webpages, as well as on data savings
and Mobile Web usage.

The elimination of infrequently used codes is expected to
have positive effects on webpage performance, based on pre-
vious Muzeel evaluations of dead code elimination. Further
reduction of infrequently used codes will also improve data
and performance savings, as webpages will only download
necessary resources [3]. However, a clear challenge with this
method is that if users interact with eliminated codes, it may
risk the website crashing. Therefore, it is important to have
a method to correctly identify infrequently used codes to
minimize this risk. We will investigate how to achieve this
while also maintaining majority of webpage functionalities.

Similar to the challenges of identifying dead codes, the
dynamic rendering of JavaScript poses difficulties in cate-
gorizing infrequently used codes. Firstly, JavaScript allows
DOM elements to be added asynchronously, which means
these elements may be interacted with at a later time or the
interactive elements may be added to the JavaScript after
series of interactions. This scenario may lead to the misiden-
tification of the interactive elements as those DOM elements
may not exist at the point of identifying the interaction.
Secondly, it is unpredictable how users will interact with
webpages [5]. Therefore, we aim to analyze user interactions
across websites with varied functionalities to identify a gen-
eral method that can accurately eliminate infrequently used
codes for any web application.



Capstone Project 2, Spring 2025, Abu Dhabi, UAE Linh Tran

We aim to identify the essential interactive elements of a
webpage using machine learning models capable of detecting
and classifying DOM elements. We use VMuzeel to assess
the impact of infrequently used interactions on webpage
performance. Specifically, we investigate whether further
performance improvements can be achieved on webpages
that have already been optimized by Muzeel, i.e., pages from
which dead codes have been removed. Additionally, VMuzeel
is designed to preserve the visual integrity of the webpage
and minimize the risk of crashes by maximizing the accuracy
of predictions related to infrequently used code.

In summary, VMuzeel aims to:

• Introduce a novel approach that leverages computer
vision and large language models for intelligent code
elimination and web optimization.

• Evaluate the effectiveness of VMuzeel in improving
load time and overall performance compared toMuzeel,
with a particular focus on infrequently used interac-
tions.

2 RELATEDWORK
Several attempts have been made to address the dead code
issue in webpages. These tools can be used as references for
methodologies of eliminating infrequently used code due to
their similarities in challenges. An example of these tools is
Lacuna, which uses a program analysis technique to identify
unused codes in a web application. The proposed approach
in Lacuna applies the call graph of the source to identify a se-
ries of functions being called from the global scope [5]. Any
function not activated from the global scope is defined as
dead code and eliminated. While Lacuna does not specifically
target infrequently used codes, it provides a backbone idea
of hypothetical methods in this paper. WebMedic is one of
the few tools that attempts to eliminate less useful codes as
dead codes. The WebMedic paper shows that the elimination
of these codes has a positive impact on the memory usage of
the webpages. However, the eradication of these codes has
resulted in a significant reduction in webpage usability [6].
While this does not align with the objective of this paper,
which aims to maintain complete usability of processed web-
pages, WebMedic provides insight into how we can identify
infrequently used codes.
Since we are considering user interactivity to further im-

prove webpage performance, it is important to understand
how to correctly evaluate the efficiency of the tool because
of the predictable decrease in webpage usability. Both pa-
pers [2] and [7] provide metrics to understand the effective-
ness of web optimization in terms of user interactivity. More
specifically, paper [7] introduces a new metric of "time-to-
interactivity", measuring how quickly a webpage becomes in-
teractive for users. This metric provides insights into changes

in user interaction post-optimization. Paper [2] identifies the
level of user interest in different parts of the webpage using
gaze tracking. Such analysis may provide potential metrics
to determine the threshold of codes that are less likely to
be used on webpages. Hence, these tools can be useful in
evaluating the efficiency of infrequently used code elimina-
tion. Finally, Florence 2 will be our main computer vision
model for user interaction analysis due to its light-weight
and robustness [9].
Lastly, Muzeel is the main source of codes on which we

will implement the infrequently used code elimination. This
development will act as an extension of the tool to further
reduce more codes and evaluate its effectiveness compared
to Muzeel. More significantly, Muzeel applies a black-box
approach to identify most dead codes while also considering
user interactions. Its basic idea involves exploring all possi-
ble states of the website through user interaction emulation
and browser event tracking. Reportedly, Muzeel has been
tested on a much larger dataset compared to Lacuna and has
achieved greater efficiency in identifying and eliminating
dead codes [3]. Therefore, the technical implementation of
Muzeel will be the basis for evaluating any further imple-
mentation of identifying infrequently used codes.

3 METHODOLOGY
3.1 User Interaction Study
To determine which webpage interactions are considered
“useful” by users, we conducted a user interaction study. A
group of participants was recruited to browse a curated set
of websites randomly selected from a list of popular domains.
During each session, participants were asked to interact with
the websites as they normally would. With their consent,
their sessions were recorded to support the evaluation and
training of the computer vision model.

Each participant was tasked with identifying:

(1) the interactive elements present on the webpages that
they are more likely to use, and

(2) the nature of their interactions with those elements.

Participants initially interacted with a designated set of
websites as they would normally do, some of which were
repeated across sessions for consistency and cross-validation.
We specified the instruction that we did not want them to
find all interactions in the webpage (9). Following the interac-
tion phase, participants were asked to annotate screenshots
of the websites. They labeled each interactive element ac-
cording to its purpose, such as buttons, hyperlinks, and input
fields. These annotated screenshots were then processed into
structured objects, containing bounding box coordinates and
corresponding labels, for input into the machine learning



Understand the Impact of Infrequently Used Interactions in Webpages with VMuzeel Capstone Project 2, Spring 2025, Abu Dhabi, UAE

Figure 1: Participant’s Label Example

model. Throughout the study, video recordings of the partici-
pants’ actions (collected with consent) were used to correlate
their actual behaviors with the labeled elements.

3.2 Interactive Elements Identification
Since we are deploying a black-box approach for code elimi-
nation, it is inherently difficult to determine the full set of
interactive elements present on a webpage. To enable the
automated identification of these elements, we fine-tuned
Florence 2, a computer vision model developed by Microsoft,
using a dataset derived from both participant-labeled interac-
tions and publicly available interactive element annotations
on Roboflow [1].

A preliminary experiment using a short training duration
of 10 epochs yielded promising results, particularly in the ac-
curate identification of dropdown menus and buttons. Figure
2 shows an example of the output from Florence 2 after fine-
tuning. The model outputs the detected interactive elements
on a webpage based on the labeled training data. Florence
2 is then evaluated against a publicly available computer
vision model trained solely on Roboflow to benchmark its
performance in identifying interactive elements.

To integrate the computer vision model with Muzeel, we
capture a screenshot of each webpage after it is fully loaded.
Screenshots from sites that fail to load or are blocked by
third-party providers are filtered out. The valid screenshots
are passed through the model, which produces a list of inter-
active elements detected in the visual representation of the
page. It is important to note that, because this approach re-
lies solely on the initial page load screenshot, any hidden or
dynamically revealed interactions (e.g., dropdowns revealed
on hover) may not be included in the image and thus will
not be recognized by the model. However, we treat these
interactions as valid targets for elimination, based on the
assumption that they are not immediately accessible to users
during typical browsing sessions.
The final output of this process is a deduplicated list of

interactive elements identified on the page. This provides a
preliminary understanding of the interactive landscape of

Figure 2: Example Output of Florence-2

the website, which serves as a foundation for subsequent
filtering and optimization steps.

3.3 Interaction Identification
Given our familiarity with standard web design patterns,
users often expect certain default interactions for specific
website elements. However, identifying interactions alone is
not sufficient for filtering out infrequently used ones, as each
element may support multiple interactions, some of which
are rarely triggered. To address this, after obtaining the list of
DOM elements on a webpage through the computer vision
model, we process this list using a large language model
(GPT-3.5-turbo).

Specifically, we provide GPT-3.5-turbo with a predefined
list of default interactions as part of the prompt, instructing
it to return only those interactions [8]. This constraint is
crucial, as it ensures consistency with Muzeel’s legacy im-
plementation, which relies on specific interaction keywords
for code elimination. For example, a double-click interac-
tion might be described as either double-click or dbclick, but
only the latter is recognized by Muzeel. By explicitly speci-
fying acceptable terms in the prompt, we ensure that only
compatible interactions are returned.
The model is further instructed to list only common and

likely interactions, rather than exhaustively listing every
potential behavior associated with an element. The final
output is a non-repetitive list of standardized interaction
labels corresponding to each website, which can then be
used for subsequent filtering and analysis.

Listing 1: ExampleUser Prompt for Interaction Predic-
tion
user_prompt = {

"role": "user",
"content": (

f"You are being given a list of HTML
elements found on a website: [{

elements_str }] "



Capstone Project 2, Spring 2025, Abu Dhabi, UAE Linh Tran

"Your task is to identify the list
of user interaction event types
COMMONLY associated with these
elements. DO NOT TRY TO FIND ALL
INTERACTIONS."

"Only return a single flat list of
interactions do not group by
element or give explanations .\n

\n"
"ONLY include interactions from this

fixed set: "
"click , mousedown , mouseup , focus ,

blur , mouseover , mouseenter ,
mouseout , mouseleave , "

"keydown , keypress , keyup , input ,
change , dblclick , drag ,
dragstart , dragend .\n\n"

"Format your response exactly like
this (nothing more):\n"

"<response >[click , focus , mouseover
]</response >\n\n"

"Do not include JSON , element labels
, or any other formatting."

)
}

3.4 Element Filtering
After identifying all interactive elements and their corre-
sponding interactions on a webpage, we leverage Muzeel’s
existing mechanism to perform interaction-based filtering.
Specifically, Muzeel includes an interaction bot that auto-
matically navigates through a webpage and simulates user
interactions with all elements, including nested (child) ele-
ments.

The bot operates using an XPath tree structure, beginning
with the root nodes (e.g., <html> or <body>) and traversing
downward to interact with child nodes. In our implementa-
tion, before the bot initiates any interactions, we filter its
target XPaths using the interactions and elements gener-
ated from our models. As a result, the bot proceeds only
with interactions on the elements previously identified as
commonly interactive elements.

Additionally, the bot also interacts with any child elements
of the identified parent elements, as these children are likely
to be interacted with during typical user behavior. At the
end of this process, the bot produces a log containing the el-
ements it interacted with which are the elements considered
“useful” for the user experience. Alternatively, any elements
or interactions not activated by the bot are our targeting
codes for elimination. These represent either the "dead code"
as defined in Muzeel or the "infrequently used code" targeted
by VMuzeel.

3.5 Code Elimination
VMuzeel utilizes the same code elimination mechanism im-
plemented in Muzeel. Once the interaction bot returns a
log of elements it has interacted with, which are the use-
ful or active elements, we maintain Muzeel’s mechanism to
identify and eliminate any functions not triggered during
the interaction process. However, in VMuzeel, this elimina-
tion is applied on top of the Muzeeled version of the web-
site, which has already had its dead code removed. In other
words, VMuzeel performs an additional step of code elimina-
tion targeting infrequently used interactions, thereby further
optimizing an already cleaned website. The resulting files
are saved with a .v extension to distinguish them from the
original Muzeel output. This step does not require any mod-
ification to Muzeel’s core logic, as VMuzeel builds directly
upon its original implementation.

3.6 VMuzeel Evaluation
To evaluate the effectiveness of VMuzeel, we deploy an au-
tomated agent to collect performance metrics such as page
time, Speed Index, and other relevant statistical indicators.
Thesemeasurements are gathered from three sets of websites:
the original (unaltered) websites, the Muzeeled versions, and
the VMuzeeled versions. By comparing these datasets, we
aim to assess whether VMuzeel provides performance im-
provements beyond Muzeel and to evaluate whether further
code elimination compromises the functionality or usability
of the original websites.

4 EVALUATION
To evaluate the effectiveness of VMuzeel, we tested it against
100 randomly selected websites from the Tranco list and com-
pared the results with those of their Muzeeled counterparts.
Each website was tested five times to account for potential
anomalies caused by fluctuations in network conditions. All
load evaluations were conducted using the Chrome browser
on an Android device to ensure consistency across tests for
both Muzeel and VMuzeel versions.

4.1 Page Load Time
Figures [3] and [4] present the Cumulative Distribution Func-
tion (CDF) of load times and fully loaded times across three
versions of each website: the original, Muzeel (with dead
code removed), and VMuzeel (further optimized).

As shown in the CDF graphs, the VMuzeel version consis-
tently shifts to the left of both the original andMuzeel curves,
indicating faster load times overall. Notably, VMuzeel shows
a significant improvement for pages that load in under 60,000
milliseconds, highlighting its effectiveness in accelerating
page performance, especially under typical network condi-
tions. Additionally, the CDF for fully loaded time (Figure [4])



Understand the Impact of Infrequently Used Interactions in Webpages with VMuzeel Capstone Project 2, Spring 2025, Abu Dhabi, UAE

Figure 3: CDF of loadTime

Figure 4: CDF of fullyLoadTime

demonstrates a larger performance gain with VMuzeel than
withMuzeel alone. This suggests that VMuzeel’s further elim-
ination of infrequently used interactions has a measurable
positive impact, particularly in environments with slower or
less stable connections.

Figure [5] illustrates the percentage improvement in load
time across 10 randomly selected websites when compar-
ing VMuzeel with Muzeel. The performance gains range
from 2% to over 30%. Websites with minimal improvement
likely already have a high percentage of their interactions
correctly preserved in Muzeel, resulting in fewer further
optimizations by VMuzeel. However, because the degree of
interactivity varies significantly between websites, the num-
ber of infrequently used elements also differs, accounting for
the variance in observed improvements.

4.2 File Size Comparison
As VMuzeel performs elimination on the Muzeel-generated
websites, we expect a further reduction in the size of cloned
files within the VMuzeel output. Figure [6] illustrates the
difference in file sizes for files with the same names between

Figure 5: Load Time Comparison of 10 Random Web-
sites

Figure 6: Muzeel vs VMuzeel File Size

Figure 7: Example of File Differences Between Muzeel
(left) and VMuzeel (right)

Muzeel and VMuzeel. Our analysis focuses only on files that
exist in both versions, as some Muzeel files do not require
elimination and therefore remain unchanged, with no corre-
sponding VMuzeel file generated.
We observe that the differences in file sizes vary across

files, but the overall trend shows that VMuzeel files are gen-
erally smaller due to the additional elimination steps. The
Figure [7] demosntrates how the difference in file between
Muzeeled website and VMuzeeled website. This variation
in elimination effectiveness is largely attributed to differ-
ences in website file structures. Each website may organize
functions related to interactive elements differently, which
influences how much can be eliminated. Files that show sig-
nificant reductions in size, and higher elimination rates—are
more likely to contain hidden interactive elements.



Capstone Project 2, Spring 2025, Abu Dhabi, UAE Linh Tran

Figure 8: CDF of firstContentfulPaint

4.3 Website Visual Comparison
The graph in Figure [8] displays the First Contentful Paint
(FCP), a key web performance metric that captures the mo-
ment when the first visual element is rendered on the screen.
This metric often shapes a user’s perception of a website’s
speed. The graph shows a leftward shift for VMuzeel com-
pared to both the Muzeeled and original websites, indicating
faster perceived load times.
As noted in the original Muzeel paper, the FCP values

for Muzeel and VMuzeel are expected to be similar since
JavaScript files are typically loaded after this point [4]. How-
ever, we still observe a slight improvement in FCP for VMuzeel
in the lower time range, suggesting some marginal gains in
visual responsiveness. To assess the impact of VMuzeel on
visual fidelity, we randomly selected five websites and com-
pared their appearances after applying Muzeel and VMuzeel.
Example screenshots show that VMuzeel does not compro-
mise the visual appearance of the websites. This is because
VMuzeel targets only the JavaScript functions responsible
for interactive elements, leaving the onload functions—and
therefore the initial visual structure—intact. The filtering
and elimination occur after the loading phase, preserving
the website’s original look.
Figure [10] presents two timelines comparing the load-

ing sequences of Muzeeled and VMuzeeled websites. The
results show that VMuzeeled websites follow the same visual
loading steps but at a faster pace. The visuals appear almost
identical, just delivered more quickly. However, while the
visual similarity and performance improvements are promis-
ing, further evaluation is needed to fully assess any impact
on website functionality.

Figure 9: Website visual between Muzeel (left) and
VMuzeel (right)

Figure 10: Visual Time Frame of Muzeeled (top)
VMuzeeled (bottom) Website

5 LIMITATION
5.1 Limited Information from Screenshot
A screenshot of the website is captured after it has fully
loaded, containing all the elements visible to the user at
that moment. However, certain dynamic elements and inter-
active behaviors cannot be accurately captured in a single
screenshot. For instance, videos are treated as static images,
meaning that any interactive features, such as play buttons
or video controls, may be misidentified or ignored entirely.

Moreover, since the current approach uses only one screen-
shot, it fails to capture content that appears after user interac-
tions such as hovering or clicking. Examples include pop-up



Understand the Impact of Infrequently Used Interactions in Webpages with VMuzeel Capstone Project 2, Spring 2025, Abu Dhabi, UAE

sections revealed on hover, dropdownmenus, or initial modal
dialogs that block the main content until dismissed. These
scenarios prevent the screenshot from accurately represent-
ing the full range of content and interactions available on the
page, leading to incomplete data and potentially incorrect
elimination decisions.

Although we have attempted to mitigate this limitation by
enabling the bot to interact with any child elements under
the identified interactive components, there is still a risk of
missing elements. Specifically, if certain elements are dynam-
ically added to the DOM only after user interaction, they
may be excluded from the elimination process, resulting in
incomplete or inaccurate filtering.

5.2 Model Hallucinations and Over
Estimation

Since our focus is on identifying commonly used user inter-
actions, we intentionally avoid having the computer vision
model detect all elements on a website. Doing so would con-
tradict our goal of targeting infrequently used or redundant
code. However, accurately distinguishing between frequently
and infrequently used elements remains challenging due to
the limited amount of training data and the diverse nature
of UI/UX design across websites. Currently, we attempt to
address this limitation by adjusting hyperparameters dur-
ing fine-tuning, rather than expanding the dataset. While
this helps to a certain extent, it is not a complete solution
and may still lead to incorrect prioritization or omission of
interactive elements.
In addition to computer vision, we use a large language

model (GPT-3.5) to infer possible interactions between el-
ements. This model must follow a strict output format to
ensure compatibility with Muzeel’s filtering system. If the
language model deviates from the expected format, it can dis-
rupt the parsing process and compromise the overall pipeline.
For example, if the model outputs "doubleclick" instead of
the expected "dbclick," Muzeel will fail to recognize the in-
teraction, leading to incorrect or incomplete filtering.

These types of hallucinations and formatting errors high-
light the fragility of the current system and the importance
of robust validation mechanisms to ensure consistency and
accuracy in interaction identification.

5.3 Incomplete Understanding of Website
Structures

A significant challenge in the filtering process is the difficulty
in accurately linking the XPath of an element to output
generated by the computer vision model. Many websites use
styling libraries such as Bootstrap or TailwindCSS, which
often result in non-descriptive or generic element IDs. This
lack of semantic clarity makes it challenging to ensure that

the elements identified by the model correspond precisely
to the interactive elements being targeted by the bot.
The current implementation relies on both computer vi-

sion and a large languagemodel to determinewhich elements
should be filtered. However, since the model output often
refers to general element types (e.g., “bg-white flex y-4”)
rather than specific instances, the filtering process can lack
precision. As a result, some elements may not be filtered as
strictly or accurately as intended, leading to either missed
interactions or unintended eliminations.

6 FUTUREWORKS
6.1 Series Capturing of the Website
As discussed in the limitations section, evaluating a website
using a single screenshot offers only a preliminary under-
standing of its interactive elements and fails to capture the
full range of user interactions over time. To address this,
future work can involve capturing a series of screenshots
at different stages of the user’s interaction with the website.
This sequential approach would provide a more compre-
hensive view of dynamic content and element behavior. For
example, the model can further predict the possible next state
of the website, which may include additional DOM elements
or new interaction states.
By incorporating multiple snapshots from different in-

teraction states, we can improve the accuracy of both the
computer vision and large language models. Specifically, this
method can help reduce the misidentification of elements
that appear only after certain user actions, such as clicks or
hovers. This increase in dataset would enhance model train-
ing and ultimately lead to more precise interaction filtering
and elimination.

6.2 Alternative Approach to Model
Fine-Tuning

Currently, due to the limited availability of labeled datasets,
we use two separate models: one for detecting elements
on a webpage and another for predicting the interactions
associated with those elements. However, a more effective
approach would involve using a unified dataset in which
each element is directly labeled with its corresponding inter-
actions. For instance, a button element could be labeled with
interactions like click, mousedown, and mouseup, while an
input field could be labeled with keydown and keyup. This
would allow the model to learn the relationship between vi-
sual context and interaction type more accurately, resulting
in more precise and efficient interaction prediction. Further-
more, with such a dataset, we could eliminate the need for a
separate large language model, which currently lacks visual
context when predicting interactions.



Capstone Project 2, Spring 2025, Abu Dhabi, UAE Linh Tran

6.3 Improved Structural Understanding of
Website

As noted in the limitations section, we currently lack a com-
plete understanding of how elements are structured and
identified within a website. Gaining insight into foundational
aspects—such as whether the website uses styling libraries
like TailwindCSS or Bootstrap—could help us better interpret
how element IDs are generated and structured. With this
information, instead of relying solely on computer vision to
identify DOM elements, we could fine-tune the model to take
into account styling conventions when making predictions.
For example, if the model is aware that a website uses Tail-
windCSS, it could better interpret the meaning and patterns
of class names and IDs.
Ultimately, VMuzeel could be enhanced to extract and

analyze metadata from the website headers to detect which
libraries or frameworks are in use. This additional context
would enable the model to generate predictions that are
more accurately aligned with the actual DOM structure and
element identifiers, leading to more reliable filtering and
interaction mapping.

7 CONCLUSION
We enhancedMuzeel by integrating a computer vision model
and a large languagemodel to better predict website behavior.
Our process began with a user interaction study, conducted
with participant consent, to collect preliminary data on typi-
cal user behaviors when interacting with websites. This data
was then used to fine-tune a computer vision model capa-
ble of identifying useful interactive elements present on a
webpage. These identified elements were further processed
through a large language model to determine additional pos-
sible interactions. The combined output served as the basis
for filtering out unutilized interactions in Muzeel. Elements
that were not interacted with, and therefore not logged into
Muzeel, were considered “dead code” for removal.
This optimization, referred to as VMuzeel, demonstrated

positive outcomes in terms of load time reduction and file size
savings. Compared to the original Muzeel, VMuzeel achieved
faster load times across the same set of websites. While the
degree of file size reduction varied due to differences in how
elimination was distributed across files, overall performance
was improved. Significantly, the visual appearance of the
webpages remained unchanged from the Muzeeled versions,
as filtering was applied only after all elements had fully
loaded.
Despite these improvements, several limitations remain.

Accurately filtering infrequently used interactions still poses
challenges, particularly in ensuring that the machine learn-
ing models generate precise and reliable output. Future work
will focus on addressing these challenges by refining the

models and enhancing the relevance and accuracy of their
predictions in the context of real-world webpages.

REFERENCES
[1] Wire frame. 2024. all-elements Dataset. https://universe.roboflow.com/

wire-frame/all-elements-l5mud. https://universe.roboflow.com/wire-
frame/all-elements-l5mud visited on 2024-12-14.

[2] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian, and Samir R Das.
2017. Improving user perceived page load times using gaze. In 14th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17). 545–559.

[3] Jesutofunmi Kupoluyi, Moumena Chaqfeh, Matteo Varvello, Russell
Coke, Waleed Hashmi, Lakshmi Subramanian, and Yasir Zaki. 2022.
Muzeel: Assessing the impact of javascript dead code elimination on
mobile web performance. In Proceedings of the 22nd ACM Internet Mea-
surement Conference. 335–348.

[4] Xuanzhe Liu, JinfengWen, Zhenpeng Chen, Ding Li, Junkai Chen, Yi Liu,
Haoyu Wang, and Xin Jin. 2023. FaaSLight: General Application-level
Cold-start Latency Optimization for Function-as-a-Service in Serverless
Computing. ACM Trans. Softw. Eng. Methodol. 32, 5, Article 119 (jul
2023), 29 pages. https://doi.org/10.1145/3585007

[5] Ivano Malavolta, Kishan Nirghin, Gian Luca Scoccia, Simone Romano,
Salvatore Lombardi, Giuseppe Scanniello, and Patricia Lago. 2023.
Javascript dead code identification, elimination, and empirical assess-
ment. IEEE Transactions on Software Engineering (2023).

[6] Usama Naseer, Theophilus A Benson, and Ravi Netravali. 2021.
Webmedic: Disentangling the memory-functionality tension for the
next billion mobile web users. In Proceedings of the 22nd International
Workshop on Mobile Computing Systems and Applications. 71–77.

[7] Ravi Netravali, Vikram Nathan, James Mickens, and Hari Balakrishnan.
2018. Vesper: Measuring {Time-to-Interactivity} for Web Pages. In 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). 217–231.

[8] OpenAI. 2025. GPT-3.5-Turbo. https://platform.openai.com/docs/
models/gpt-3.5-turbo

[9] Piotr Skalski. 2024. Florence-2: Open Source Vision Foundation Model
by Microsoft. https://blog.roboflow.com/florence-2/

 https://universe.roboflow.com/wire-frame/all-elements-l5mud 
 https://universe.roboflow.com/wire-frame/all-elements-l5mud 
https://universe.roboflow.com/wire-frame/all-elements-l5mud
https://universe.roboflow.com/wire-frame/all-elements-l5mud
https://doi.org/10.1145/3585007
https://platform.openai.com/docs/models/gpt-3.5-turbo
https://platform.openai.com/docs/models/gpt-3.5-turbo
https://blog.roboflow.com/florence-2/

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 User Interaction Study
	3.2 Interactive Elements Identification
	3.3 Interaction Identification
	3.4 Element Filtering
	3.5 Code Elimination
	3.6 VMuzeel Evaluation

	4 Evaluation
	4.1 Page Load Time
	4.2 File Size Comparison
	4.3 Website Visual Comparison

	5 Limitation
	5.1 Limited Information from Screenshot
	5.2 Model Hallucinations and Over Estimation
	5.3 Incomplete Understanding of Website Structures

	6 Future Works
	6.1 Series Capturing of the Website
	6.2 Alternative Approach to Model Fine-Tuning
	6.3 Improved Structural Understanding of Website

	7 Conclusion
	References

