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ABSTRACT
The abundance of images on the internet demands efficient
image-transfer strategies to optimize page load times and
overall site performance. Modern pages carry ever-larger
image payloads [6], which harm performance on low-end
devices and in regions with limited bandwidth. To address
this, we propose PixLift, a system that leverages downscaled
images during network transfer and upscales them on the
client using an on-device AI upscaler.
PixLift integrates multiple lightweight super-resolution

models selected for their performance and compatibility
across a spectrum of mobile devices to realize a pipeline
for efficient image transfer. By trading local compute for
bandwidth, PixLift reduces data transfer without compro-
mising image quality.
In this paper, we tackle three challenges: evaluating the

feasibility of scaled image requests from popular sites, build-
ing PixLift as a browser extension, and measuring its effect
on user experience. We evaluate PixLift on 71.4K real-world
webpages and three rooted Android devices (low-end to
mid-high-end). Performance is measured via load-time re-
duction, data-transfer savings, and visual quality metrics
(PSNR, SSIM). We also monitor CPU and memory overhead
to assess feasibility on constrained hardware.
Our results demonstrate significant page-load speedups

and data savings, enabling better web access for users on
limited bandwidth networks. This work bridges web opti-
mization, machine learning, and mobile computing to de-
mocratize high-quality browsing worldwide.
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1 WORK DIVISION
1.1 Yonas
In Capstone Project 1, I developed PixLift as a Chromium
extension that intercepts each image request, fetches a down-
scaled copy, upscales it with embedded TensorFlow.js super-
resolution models. I ran controlled experiments on three
Android devices loading synthetic pages with varied image
counts to measure page load speed, CPU/memory overhead,
and PSNR/SSIM.
In Capstone Project 2, I worked on doing the upscaling

in Chromium’s GPU process: in the compositor’s render
loop, each texture quad is pulled back via Skia into CPU
memory, normalized into an ONNX Runtime tensor, up-
scaled, and then reuploaded as a new GPU texture. This
GPU→CPU→ONNX→GPU flow embeds real time super-
resolution directly into Chromium’s multi process architec-
ture.

1.2 Sarthak
In Capstone Project 1, I performed a large-scale empirical
study of web image delivery to lay the foundation for PixLift,
an AI-driven upscaling pipeline. I began by collecting HTTP
Archive data from the top 50,000 sites (71,433 pages and over
3.1 million unique image URLs served by 54,754 hostnames),
and analyzed format prevalence and transfer sizes to identify
performance bottlenecks. Next, I developed and applied a
comprehensive set of URL-pattern heuristics (e.g., width=,
size=, 300x300, resize/(large|small|medium)) to detect
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and quantify image-resizing support. To ensure robust bench-
marking, I then created a stratified sampling framework
based on each site’s resizing-support ratio and total image
count, selecting 100 representative pages for end-to-end tim-
ing and resource-usage evaluation of PixLift. This methodical
approach not only uncovers current limitations in web image
handling but also provides a rigorously curated testbed for
assessing the real-world benefits of our upscaling solution.

In Capstone Project 2, I worked on integrating the PixLift
pipeline within the Chromium runtime. This involved iden-
tifying the correct model format, navigating the Chromium
repository to identify the Browser process to load the model,
creating a Mojo IPC to expose a connection between the
Renderer process and Browser process to facilitate image
upscaling and rendering on the fly.

1.3 Common
We worked together on a Renderer process prototype. Blink
loads the ONNX model. It upscales each decoded image be-
fore compositing.

2 INTRODUCTION
Images are fundamental to the web, with 99.9% of active
sites using at least one image to serve their content [14].
On mobile devices, images represent around 38.9% of the
page weight (a median of 900KB out of 2,311KB) which drive
up load time sna data consumption [2]. High-resolution im-
ages deliver visual appeal but create a steep cost for users
on metered or slow connections. In regions where data is
expensive or scarce, these heavy images can block access
entirely, reinforcing digital divides and limiting economic
opportunity. [17].

Efficient image transfer strategies are, hence, imperative to
optimize webpage loading and overall site performance. The
solution we propose involves fetching scaled-down images
over the network and restoring their fidelity on the client
side. Modern AI super-resolution models (e.g., QuickSR-Net,
SESR-M5, Real ESRGAN) can reconstruct high-resolution
detail in real time [8, 9]. By running these models in-browser
via TensorFlow.js, we trade inexpensive local compute cycles
for costly network bytes, dramatically cutting data transfer
without sacrificing visual quality.

Before building this pipeline, however, we first quantify
today’s web image practices. We analyze top 71.4 K sites
from the HTTP Archive [1], measuring image transfer sizes,
formats, and server support for remote image downscaling.
We observe that only 10% of the webpages request images
from servers that support image resizing, and a mere 1.5%
of the webpages have full downscaled image support. De-
spite the small support in today’s internet practices, PixLift
remains important to exploit current methods.

PixLift is implemented as a Chromium extension. It in-
tercepts image requests, adds scaling parameters, and then
applies one of three embedded super-resolution models to
recover the image. The three models we use are QuickSRNet
Small 4x, SR-Sub-Pixel CNN, and SESR-M5. We observe that
"QuickSRNet Small4x" is the fastest, delivering around 10x
speedup over SR - Sub-Pixel CNN, but degrades quality in
about 40% of challenging images.

Finally, we evaluate PixLift under realistic low-bandwidth
mobile conditions (1.6Mbps down/768Kbps up, 150ms RTT)
on the top 1000 Pakistani sites [11]. PixLift cuts page-load
time by a median of 7 seconds. It saves multiple megabytes
per page. CPU rises by 10–20%; memory by 1GB. On a Galaxy
A03s, upscaling ten above-the-fold images completes before
the ‘onload‘ event. A user study with 100 participants con-
firms that visual quality remains indistinguishable from orig-
inals.
This paper presents our data-driven analysis, system de-

sign, and user-centered evaluation, laying the groundwork
for practical, large-scale image optimization in bandwidth
constrained environments.

3 RELATEDWORK
Enhancing web browsing performance and user experience
has been a focus of several research efforts, with varying em-
phasis on techniques and trade-offs. However, fewer studies
have specifically investigated the role of images in this con-
text. We summarize three significant works that are closely
related to our study.

3.1 WebLego
WebLego [19] introduces a novel approach to web perfor-
mance optimization by racing semantically similar images
in place of the original content. The key idea behind We-
bLego is to prioritize faster page load times by relaxing strict
content fidelity. By using alternative images that are seman-
tically similar to the original, WebLego ensures that pages
load more quickly, which can enhance user experience in
high-latency environments. However, the approach comes
with a significant drawback: it often increases the overall
page size. This makes WebLego unsuitable for use in devel-
oping regions where limited bandwidth is a major constraint.
Despite this limitation, WebLego demonstrates the potential
of image-centric optimizations to improve web performance
by trading off content fidelity.

3.2 ScaleUp
ScaleUp [16] is a browser extension specifically designed to
address the challenges of low-bandwidth and high-latency
networks. It achieves this by dynamically adjusting the browser’s
scaling factor, effectively reducing the number of objects that
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need to be loaded above the fold. The extension increases
the size of visible content, such as text and images, allowing
these elements to load faster while deprioritizing content
below the fold. This technique ensures a smoother brows-
ing experience in constrained network conditions. However,
ScaleUp’s effectiveness diminishes on websites that load sub-
stantial content below the fold. This limitation restricts its
utility in contexts where below-the-fold content is critical to
the user experience. Nevertheless, ScaleUp presents a com-
plementary approach to our proposed system and highlights
the importance of above-the-fold prioritization in optimizing
browsing performance.

3.3 BrowseLite
BrowseLite [15] is a client-side optimization tool that fo-
cuses on reducing data usage by optimizing web images.
It achieves this by opportunistically requesting alternative
image encodings or partial image data, depending on the
network conditions and device capabilities. Unlike server-
side solutions, BrowseLite operates entirely on the client
side, maintaining user privacy and ensuring compatibility
with a wide range of websites. BrowseLite excels in band-
width savings while preserving a satisfactory level of image
quality. However, the tool does not utilize advanced tech-
niques like local AI models to enhance image quality further.
Our proposed approach builds on the ideas introduced by
BrowseLite by using highly compressed images and subse-
quently using local machine learning models for upscaling.
This integration allows for even greater data savings and
improved visual fidelity, addressing some of the limitations
of BrowseLite.

3.4 Comparison and Contribution
While WebLego [19], ScaleUp [16], and BrowseLite [15]
present innovative solutions to optimize web performance,
none of these approaches leverage machine learning models
for image enhancement. WebLego compromises content fi-
delity for speed, ScaleUp focuses on browser scaling without
addressing image quality, and BrowseLite prioritizes data
savings without incorporating ML-driven upscaling tech-
niques. Our proposed system bridges this gap by introducing
a novel method that combines the use of highly compressed
images with local ML-based super-resolution models, en-
hancing both performance and user experience. This hybrid
approach addresses the trade-offs in existing methods and
provides a scalable solution for optimizing web image deliv-
ery, particularly in low-bandwidth environments.

4 METHODOLOGY
We pursued two main strands: a large-scale analysis of real
world image delivery and an in-browser evaluation of super
resolution upscaling.

4.1 Web Data Analysis
To enable a more comprehensive examination of web image
delivery, we drew on the publicly available HTTP Archive
dataset in Google BigQuery. This resource continuously
crawls the most popular sites, organized into tiers (top1K,
top5K, top10K) by the Chrome User Experience Report’s log-
arithmic ranking, and stores over 2.1 trillion records (as of
December 8, 2024), each capturing a single page’s HTML,
JavaScript, images, audio, and video assets [1, 3, 4]. Lever-
aging BigQuery’s powerful SQL interface, we extracted the
top 50K pages across these tiers and recorded every image’s
count, byte size, and format. Because we included both land-
ing and internal URLs, our final corpus grew to roughly 71.4K
distinct pages.

From this dataset, we pursued three goals. First, we char-
acterized image-format usage—tracking the rise and fall of
JPEG, WebP, AVIF, and other types via cumulative distri-
bution analyses. Second, we systematically tested each im-
age hosting domain for built-in resizing support by issu-
ing modified URL parameters (e.g., width=, size=, “large”
’small/medium’) and flagging hosts that returned smaller
payloads. Third, we assembled a balanced subset of sites,
spanning formats, sizes, and resizing behaviors, to serve as
our testbed for evaluating PixLift’s bandwidth-vs-compute
trade-offs. All of these were thoroughly analyzed to design
the pipeline discussed in Section 4.5.

4.2 Representative Set for PixLift Pipeline
We create a representative set of websites that mirrors the
current state of the web regarding image resizing capabil-
ities. This dataset serves as the benchmark for evaluating
the PixLift pipeline against two criteria: (1) user Quality of
Experience (QoE), assessed using web performance metrics,
and (2) resource usage, measured through data consumption,
CPU utilization, and battery impact.

4.2.1 Methodology: To construct this representative set, we
applied a stratified sampling approach to the corpus of 71.4k
webpages. Sampling was based on two critical metrics:

(1) Percentage image resizing support: the fraction of
hosted images within a site that supports resizing. For
example: a site that has 10% of the images uses host-
names that support image resizing.

(2) Total count of hosted images: the overall number
of images present on the site.



Capstone Project 2, Spring 2025, Abu Dhabi, UAE Yonas Atinafu and Sarthak Prasad Malla

We divided the dataset into distinct strata based on intervals
of these metrics. For image resizing support, we used inter-
vals such as [0–10%], [10–20%], ..., [90-100%], while for the
total image count, we grouped sites into their quartiles (i.e.
[0-Q1], [Q1-Median], [Median-Q3], [Q3-Maximum count]).
Each page, thus, falls into a unique combination of these
strata.

Within each stratum, we determined the proportional rep-
resentation of pages relative to the total dataset. Using this
proportional distribution, we performed random sampling
to select 100 webpages in total. This method ensured the
representative set accurately reflected the distribution of
webpages with varying levels of image resizing support and
image density.

4.2.2 Evaluation of Representativeness. The stratified sam-
pling approach allowed us to create a diverse and balanced
dataset, encompassing a wide spectrum of web scenarios.
This representative set serves as the foundation for bench-
marking the PixLift pipeline under real-world conditions. By
accounting for both the prevalence of image resizing and
image density, we ensure that the results derived from this
evaluation can be generalized to the broader web ecosystem.

4.3 Super-Resolution Models
We evaluated seven state-of-the-art image super-resolution
models for integration: QuickSRNet (Small, Medium, and
Large variants), SESR-M5, SR_Sub-Pixel CNN, Real ESRGAN,
and XLSR [7]. Based on compatibility and performance con-
siderations, the following models were selected for testing:

• QuickSRNet Small 4X: Lightweight and suitable for
real-time processing on low-end devices.

• SESR-M5: Known for its efficiency and competitive
performance across a wide range of devices.

• SR_Sub-Pixel CNN: Offers fast processing with sat-
isfactory image quality enhancement.

• Real-ESRGAN: Selected exclusively for mid-to-high-
end devices (e.g., Galaxy A34) due to its higher com-
putational demands and superior visual output.

To ensure compatibility and efficient deployment of super-
resolution models on web platforms, a multi-stage conver-
sion pipeline was employed to transform the models from
their original PyTorch (.pth) [5] format into TensorFlow.js
(.tfjs) [13] format:

(1) Conversion toONNX [12]: Each PyTorchmodel was
exported to the ONNX (.onnx) format, enabling inter-
operability between frameworks.

(2) Conversion toTensorFlow: ONNXmodelswere con-
verted into TensorFlow (.tf) format, integrating them
within the TensorFlow ecosystem.

(3) Conversion to TensorFlow.js (TFJS): Finally, Ten-
sorFlowmodels were converted to TFJS (.tfjs) format.
This step included quantizing [10] models to Float16
for improved performance and ensuring suitable input
shapes for various devices.

After initial assessments, the models selected for further
evaluaiton were QuickSRNet Small 4X, SESR-M5, SR_Sub-
Pixel CNN, and Real ESRGAN. TheQuickSRNet Large,Medium,
and XLSRmodels were excluded due to higher computational
demands and compatibility issues with low-end devices.

4.4 Integration with TensorFlow.js
The selected models were integrated using TensorFlow.js,
enabling real-time image enhancement directly within the
browser environment. TensorFlow.js provides a flexible and
efficient platform for deploying super-resolution models by
leveraging WebGL for GPU acceleration. This ensures that
the extension runs smoothly on devices with varying com-
putational capabilities, including low-end smartphones.

Key configurations include: Setting the TensorFlow.js back-
end to WebGL (await tf.setBackend('webgl')) to uti-
lize GPU acceleration; Optimizing precision settings by dis-
ablingWEBGL_FORCE_F16_TEXTURES, allowing the use of
lower-precision textures when appropriate; Ensuring system
readiness by awaiting TensorFlow.js initialization (await
tf.ready()).

Browser

PixLift extension

Model loader 
(tf.loadGraphModel)

GPU via WebGL

Telemetry Module (CPU, 
memory, network)

CSV exporter  
(json —> CSV)

HTTP POST

PHP metrics server  
(upload_metrics.php)

DOM observer 
(MutationObserver)

Preprocess:  
blob —> tensor

Inference: 
model.predict()

Postprocess: 
tensor —> DataURL 

Browser process

PyTorch ONNX (.onnx) TensorFlow TensorFlow.js  
(.tfjs + Float16)

Figure 1: PixLift system flow diagram.

4.5 Development of a Browser Extension
for Kiwi Browser

The practical application of this project is realized through a
browser extension designed to dynamically process images
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on web pages. The extension incorporates the following
features:

• Image Detection and Monitoring:
A MutationObserver monitors the web page’s <img>
elements, dynamically queuing newly loaded or modi-
fied images for processing.

• Controlled Concurrency: The extension processes
a maximum of two images concurrently, using a FIFO
queue to manage tasks efficiently without overloading
device resources.

• Image Processing Pipeline:
– Preprocessing: Images are fetched as blobs [18],
converted to tensors, resized to the model’s input
dimensions, and normalized.

– Inference: The preprocessed tensor is fed into the
super-resolution model, generating an enhanced ten-
sor.

– Postprocessing: The enhanced tensor is denormal-
ized, rendered onto a canvas, and converted back to
a Data URL for display.

5 EVALUATION
This section assesses the performance, visual quality, and re-
source consumption of our super-resolution extension under
controlled conditions and through a user study. To evalu-
ate the extension’s scalability and performance, tests were
conducted on three rooted Samsung Galaxy devices:

• Galaxy A12 & A03s (Low-End Devices): Models
tested include QuickSRNet Small 4X, SESR-M5, and
SR_Sub-Pixel CNN. Real ESRGAN was excluded due
to its higher resource demands.

• Galaxy A34 (Mid-to-High-End Device): All four
models were tested, including Real ESRGAN, lever-
aging the device’s superior computational capabilities.

We report latency, processing time, CPU and memory usage,
and two image-quality metrics: Peak Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM).

5.1 Device Specifications
Galaxy A03s: Octa-core Cortex-A53 (4 × 2.35 GHz + 4 × 1.8
GHz), PowerVR GE8320 GPU, 4 GB RAM.
Galaxy A12: Same CPU/GPU class as A03s, 4 GB RAM.
Galaxy A34: Octa-core (2 × 2.6 GHz Cortex-A78 + 6 × 2.0
GHz Cortex-A55), Mali-G68 MC4 GPU, 4 GB RAM.

5.2 Controlled Device Experiments
Experimental Design. We ran experiments for each com-

bination of the model and device. For every model–device
pairing we ran 500 page-load trials. Each trial loaded a syn-
thetic page containing one to ten above-the-fold images cho-
sen uniformly at random from a pool of 100 images with

mixed resolutions and formats collected through the method
described in Section 4.2. The telemetry module embedded in
the extension captured all metrics automatically.

Procedure.
(1) Load test page; measure image fetch latency.
(2) Run the super-resolution pipeline

(preprocess→ inference→ postprocess).
(3) Log PSNR, SSIM, CPU, and memory per image and per

page load.

Dataset Diversity. Images span JPEG, PNG, WebP, and
AVIF formats and resolutions from 360 p to 4 K, ensuring
that the pipeline is stressed across a broad range of inputs.

Repetition and Variance Control. Each configuration (de-
vice ×model × image count) was repeated 50 times to account
for noise in CPU scheduling and garbage collection. Mean
and 95 % confidence intervals were computed for all metrics.

5.3 User Study
To gauge perceptual improvements, we conducted a double-
blind preference test with 100 participants. Twenty images
were randomly sampled from the test pool, downscaled to
200 px width, and then upscaled using SESR-M5, SR Sub-
Pixel CNN, and QuickSRNet. Each participant viewed the
three upscaled variants plus the original and ranked them by
perceived quality. Votes were aggregated using Borda count-
ing. The study complements objective PSNR/SSIM scores
with human perception.

6 RESULTS
This section reports objective metrics (PSNR, SSIM, latency,
processing time, CPU andmemory usage) and subjective user
feedback for the super-resolution extension on three devices:
Galaxy A03s, Galaxy A12, and Galaxy A34. Unless stated
otherwise, results reflect 500 controlled page-load trials per
model–device pairing and 100 human-rated images.

6.1 Image Quality: PSNR and SSIM
Figure 2 summarizes PSNR and SSIM across models.

• PSNR.Values span 15–40 dB. SR_Sub-Pixel CNNyields
the highest medians on all devices (26–30 dB). Quick-
SRNet and SESR-M5 are slightly lower (22–28 dB) but
remain above the 20 dB usability threshold.

• SSIM.Most scores exceed 0.90. SESR-M5 leads on av-
erage (0.95–0.97), while SR_Sub-Pixel CNN follows
closely; QuickSRNet is a consistent third but never
drops below 0.92.

Insight. SR_Sub-Pixel CNN offers the best objective fidelity,
whereas SESR-M5 delivers the strongest perceptual similar-
ity.
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Figure 2: PSNR and SSIM Comparison Across Mod-
els. This visualization highlights the performance of
different super-resolution models in terms of image
quality metrics. Higher PSNR and SSIM values indi-
cate better image fidelity and perceptual quality.

6.2 Processing Time and Latency
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Figure 3: Processing Time Over Multiple Page Loads.
This graph illustrates how processing times vary
across consecutive page loads for different devices and
models.
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Figure 4: Latency Over Multiple Page Loads. This
graph highlights the variation in latency during con-
secutive page loads, emphasizing device-specific and
model-specific performance.
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Figure 5: Comparison of Latency and Processing Time
Across Devices. This comparison showcases the rela-
tionship between latency and processing time for the
evaluated super-resolution models.

Figures 3, 4, and 5 detail timing results.
• Low-end devices (A03s, A12).
– Average processing times vary based on the num-
ber of images processed, with single and two-image
cases showing linear increases in processing time
due to the concurrency limit (MAX_CONCURRENT =
2).

– For 1–2 images: Processing times reflect immediate
GPU usagewithout overlap, with times ranging from
3800–4500 ms.

– For 3+ images: Queuing by the CPU enables overlap
between image transfer and GPU processing, result-
ing in sublinear growth in processing time. Stabiliza-
tion occurs as tasks are efficiently queued, reducing
delays.

– As for network latency in these devices, it peaks at
1.4 s for A03s and stabilizes near 0.6 s for A12.

• Mid-range device (A34).
– Processing stays within 1–2 s regardless of image
count thanks to a faster Mali-G68 GPU.

– Fetch latency remains 0.15–0.25 s even at maximum
load.

A34 completes both transfer and upscaling 50–75 % faster
than low-end phones.

6.3 CPU and Memory Usage
As shown in table 1 SESR-M5 squeezes the most work out
of each CPU cycle, so it keeps processor demand in the mid-
teens while holding memory between 2.1 GB and 4.6 GB.
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SR_SubPixel CNN inserts sub-pixel layers that explode in-
termediate feature maps; this raises its RAM footprint to as
much as 5.8 GB even though clever tensor re-arrangements
keep CPU load in the 14–17% band. QuickSRNet trims param-
eters and intermediate buffers to stay near 2 GB on low-end
phones, but its lightweight design shifts more scheduling
overhead to the CPU, pushing usage toward 20

6.4 User Study
Participants compared originals to outputs from SESR-M5,
SR_Sub-Pixel CNN, and QuickSRNet on a 1–10 scale (5 =
identical to original). All three models scored significantly
above 5 (p<0.01, paired t-test). No statistically significant
difference emerged among the three models, though SR_Sub-
Pixel CNN showed a marginally higher mean score.

6.5 Summary of Findings
We found that SR-Sub-Pixel CNN delivers the highest fi-
delity (PSNR), with SESR-M5 close behind on perceptual
quality (SSIM), while QuickSRNet Small 4× is the fastest,
achieving roughly a 10× speed-up over SR-Sub-Pixel CNN. In
resource-limited settings, QuickSRNet is themost efficient on
devices with tight RAM budgets, whereas SESR-M5 is prefer-
able when CPU cycles are scarce. Importantly, all of our
models finish upscaling before the browser’s onload event
on a midrange A34 device, even with ten above-the-fold im-
ages, and low-end hardware easily meets this target for up
to five images.

7 CHROMIUM INTEGRATION
Currently, PixLift is developed as a browser extension. De-
spite its advantage of on-demand deployment, not all mobile
browsers allow for extensions. This motivates the need for
the pipeline to be directly integrated into the Chromium
runtime. In this section, we describe how we attempted to
embed PixLift within Chromium’s multi-process architecture
to provide native super-resolution capabilities.

7.1 Renderer Process
Our initial implementation attempted to execute the ONNX-
formatted super-resolution model inside the Renderer pro-
cess. This process is executed through a third party called
Blink, which is responsible for composing the pixels that
make up the web pages.
We attempted to load the ONNX model within Blink. In

this design, images decoded by Skia were converted into nor-
malized tensors for inference by ONNX Runtime and then
transformed back into Skia bitmaps for display. However,
during testing, we found that Blink does not include a mech-
anism to load large model files at runtime. To address this

limitation, we moved model loading into the Browser pro-
cess, which has higher privileges. We implemented a Mojo
IPC interface so that the Browser process loads and caches
the ONNX model once at startup, then the Renderer process
issues inference requests and receives upscaled pixel data in
return. This separation of responsibilities eliminates redun-
dant file I/O in each renderer instance and maintains a clear
division between resource management and pixel rendering.

Figure 7 shows the dataflow of how images are handled for
upscaling in the Chromium runtime. We inject our pipeline
within a function called DecodeFrameBufferAtIndex, which
decodes the image before queuing it up for rendering. We
simply take the bitmap of the image, as explain above, and
replace it with the bitmap of the upscaled image.

However, this pipeline is not effective yet, with the chromium
build unable to load the model correctly and run the image
optimization. Below, we discuss shifting the image upscaling
into a GPU process, which was also rendered ineffective in
producing a viable and stable solution.

Figure 7: PixLift chromium runtime integration.

7.2 GPU Process
We implemented the upscaling process in the GPU process as
an intermediary step for resolving the issue we encountered
in the Renderer process. We postulated that Blink was not
able to run the model at all, and needed more computational
resources through GPU GPU-accelerated process.

For every frame, the compositor grabs each texture quad’s
GPU image and uses Skia to read its RGBA pixels back into
CPU memory. These pixels are normalized and packed into
an ONNX-compatible tensor, which ONNXRuntime upscales
to the target resolution. The resulting tensor is denormal-
ized, converted back into pixel data, and encapsulated in a
new Skia image. Finally, the extension uploads this image
as a fresh GPU texture and replaces the original quad, thus
forming a continuous GPU→CPU→ONNX→GPU super-
resolution loop.
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Figure 6: PixLift performance evaluation: resource usage and visual quality assessment via user study.

Table 1: Resource usage per super-resolution model

Metric SESR-M5 SR_Sub-Pixel CNN QuickSRNet

CPU usage (%) 13–18 14–17 18–21
Memory usage (GB) 2.1–4.6 2.6–5.8 2.0 (low-end)

8 CONCLUSION
This work presents PixLift, a browser-based pipeline that
trims bandwidth by downscaling images in transit and re-
stores visual quality with on-device super-resolution. Exten-
sive tests on the Galaxy A03s, A12, and A34 confirm that the
idea is practical across a wide hardware spectrum. SR_Sub-
Pixel CNN consistently delivers the highest PSNR, while
SESR-M5 achieves the strongest SSIM, preserving fine struc-
ture and perceptual detail. QuickSRNet Small 4x stands out
for speed and minimal memory use, making it attractive for
entry-level phones even though it demands slightly more
CPU. On the mid-range A34, all models complete inference
before the browser’s onload event with ten above-the-fold
images; low-end devices meet the same target with up to five
images, proving the approach scales with available compute.
The study also shows that users rate upscaled images as

visually equal to—or better than—their originals, validat-
ing the objective gains in PSNR and SSIM. These results
demonstrate that modest client-side computation can offset
expensive network transfers, yielding faster, data-efficient
browsing without server changes or privacy risks.

Future work will refine the extension along several fronts.
First, systematic hyper-parameter searches and learning-rate
schedules may shave additional milliseconds from inference
while preserving quality. Second, moving critical kernels
to WebAssembly could accelerate devices lacking robust
GPU drivers. Third, adaptive queue management can balance

latency and resource use on the fly, especially under con-
strained memory. Fourth, distilled or sparsity-pruned vari-
ants of the current models can target ultra-low-end phones
where even 2 GB of RAM is a luxury. Finally, longer-term
user studies will capture day-to-day perceptions of speed,
data savings, and visual quality, ensuring that technical im-
provements translate into tangible benefits.
By uniting data-driven insight with careful engineering,

offers a scalable path toward richer yet lighter mobile web
experiences, helping close the digital divide for users who
pay the highest price for every kilobyte.
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