
Simplifying the Web: Optimized Network Architecture

and User Interface for improved Internet access in

Developing Regions

Gabriel Garcia Leyva

Computer Science Capstone Project

Advisors: Yasir Zaki, Moumena Chaqfeh

Abstract

The Internet has developed since its initial consumer use in the 1990’s to boast more than 4
billion users. To support this exponential growth the developed world has spent countless resources
on deploying high-speed networks that can compensate for the Internet’s increase in complexity.
Modern web pages are riddled with inefficiency, which makes them heavy and slow in places that
lack the proper infrastructure. This leaves developing regions and remote areas with a sub-par and
many times cost prohibitive Internet experience, as most users in these regions access the Internet
through mobile data networks. We aim to provide an optimized Network Architecture and User
Interface in developing regions, so they too can take advantage of the wonders of the Internet. Our
research focuses on deploying Man-In-The-Middle (MITM) Proxies on Distributed Edge Caches
that are close to the users and store cached pages, which are optimized through our JavaScript
simplification software. We also provide a light-weight User Interface that allows users to search
our database of cached pages through relevant keywords, thanks to our word-ranking algorithm.
Our Results showed that our MITM Distributed Edge Caches provided significant improvements
in Page Load Time (PLT), Page Size, and Number of Requests.

1



Introduction

Throughout the years the Internet has become exponentially more complex. Web pages that used
to be written in HTML, with a little JavaScript logic and some CSS resources, are now written
in React, Angular, or Node, and riddled with inefficiencies. Many resources are now imported
from external libraries. Such level of complexity leads to a large number of inefficiencies and un-
necessary resources being requested, which leads to an increased Page Load Time (PLT), Page
Size, and Number of Requests. The developed world has compensated this issue by building large
network infrastructures that allow for high-speed Internet access. However, developing regions
and remote areas have not been able to deploy such expensive infrastructure, and are left with
a sub-par experience. Furthermore, The International Telecommunication Union (ITU) reported
that mobile-broadband subscriptions reached 2.3 billion by the end of 2014, with 55% of them in
developing countries[1], as most users in the developing world only have mobile-broadband sub-
scriptions. Given this scenario accessing the Internet becomes cost-prohibitive as sites they access
unnecessarily consume much of their data on unused resources.

However, this sub-par experience is not only caused by inefficient web pages. The Page Load Time
(PLT) of the web pages that users in developing regions access is also hampered by the large Round
Trip Times (RTT) that the requests require since most web pages’ servers are located in North
America and Europe. The critical limitations characteristic of network infrastructures in developing
regions do not help alleviate this. First, they are largely unreliable and outdated. Second, Internet
Service Providers (ISPs) in these regions have spent little to no resources on reducing RTT by
placing servers closer to their users, which increases the expected Page Load Time (PLT) and
becomes a bottleneck in the improvement of networks in these areas. Therefore, a combination of
large Page Load Times, Page Sizes, Number of Requests, and unreliable networks limits at least
and blocks at most the access of users in developing countries to what most in the developed world
consider a basic necessity.

Specific Aims

To address the aforementioned issues of slow and heavy web pages, we aim to develop an optimized
network architecture in order to reduce Page Load Time (PLT), Page Size and Number of Requests
of all requested pages. We aim to achieve these results through a combination of better network
design and JavaScript simplification, by caching simplified pages.

In order to allow users to interact with our optimized network architecture, we aim to develop
a User Interface, consisting of a search engine that will allow the users to search for our cached
simplified pages. We also aim to make this search engine as ”smart” as possible, by adding a word-
ranking algorithm which we expect to lead to more accurate search results. Finally, we expect this
technology to be implemented in developing regions and remote areas, which leads us to develop a
light-weight and simple software.

Background

We have analyzed state-of-the-art technologies relevant to the implementation of our network archi-
tecture. Our solution either builds on top of such technologies or fares better in terms of Page Load
Time (PLT), Page Size, and Number of Requests. We have seen how using the SpeedReader[2]
reader mode improves the load time of HTML elements by performing a tree translation that
removes useless page elements. Along those lines, we studied Polaris[3], which uses fine-grained

2



dependency graphs to dynamically determine which objects to load, and when. Concerning limiting
Page Size we delved into Flywheel[4], an HTTP proxy service that extends the life of mobile data
plans by compressing responses in-flight between origin servers and client browsers and reduces the
size of proxied web pages by 50% for a median user. However, three papers are essential to the
successful completion of our project.

Shandian

From Shandian[5] we get the way in which we load the pages and the inspiration to do computations
in a proxy server. Shandian improves Page Load Time (PLT) by simplifying the client-side page
load process through an architecture that splits the page load process between a proxy server and
the client. By performing pre-processing in the proxy server which has more computing power,
Shandian largely reduces the inefficiencies of leading to slow Page Load Time (PLT) on the client.
Shandian is fast for displaying web pages, ensures that users are able to continue interacting with
the page, and is compatible with caching, CDNs, and security features that enforce same-origin
policies.

XCache

From the xCache paper[6], we get the core of the architecture that we use in our network design.
The xCache architecture consists of a set of Edge Caches (ECs) in close proximity to the users.
ECs are centrally monitored and managed by a Cloud Controller (CC). The CC collects web page
requests and performance information from the ECs to determine the best set of web pages to
prefetch and store at each EC. The Cloud Controller is in charge of simplifying the web pages
requested by the ECs and sending the cached versions back to the ECs for easy and fast access by
the end-users.

Understanding Mobile Phones Characteristics In Developing Countries

We also considered important to understand the characteristics of the devices, users in developing
regions access the Internet with. This paper uses 2014 data of about 0.5 million users in Pakistan[1].
Although the data is somehow outdated, there are important takeaways that we can extrapolate to
the present. First, lack of enough memory (RAM) and CPU power is a very large issue in mobile
devices overall, but especially in developing regions. That is why we have decided to take that
burden out of the user’s device and put it in our Cloud Controller (CC). Second, even if network
conditions improve in developing regions, there might be many bottlenecks at the device level that
we should take into when simplifying we pages.

The above literature, although relevant, does not match our solution’s performance, which is
one of the key reasons why we decided to conduct this research. First, all of the above technologies
address part of the problem, rather than having a holistic approach to the issue of Internet access
in developing regions, therefore, alleviating certain pain points but not all of them. There are two
major issues that lead our solution to perform better than the existing literature. First, when
addressing network conditions, they lack a User Interface that allows users to easily interact with
their solutions. Second, they fail to address the main issue that undermines the modern Internet:
JavaScript inefficiencies, which result in unnecessary URL requests and imported resources.

3



Goals And Potential Impact

The goal of this project is to improve the overall experience that users enjoy when accessing the
Internet while on a limited and/or unreliable networks. The improvements we aim to offer can
become a huge improvement in comparisons with the options that users in the developing regions
currently have. In addition to the aforementioned technical aspects, our research project can also
have a direct impact on the economy of our users. Since we reduce the Page Load Time and Page
Size of requested web pages, we save the user both time and data, therefore, helping our users re-
gardless of the way the Internet usage is measured and charged in their countries/areas. Our hope
is that this project positively impacts users across developing regions and remote areas elsewhere
who still struggle with connectivity and/or are priced out of the current Internet offerings. More
specifically, as part of our research, we expected to deploy our solution in Havana, Cuba in partner-
ship with the University of Havana. However, given the new environment caused by the COVID-19
pandemic, this was not possible. This notwithstanding, we describe below our implementation plan
in the hopes of future deployment:

In Havana, Cuba we planned to serve 2,000 members of a community that currently boasts more
than 5000 users, who have no access to the Internet. We decided to only serve 2,000 users, as those
are the ones closest to our University of Havana hub. These users are part of what is colloquially
known as the ”SNET” (Street Network), which is a completely offline Metropolitan Area Network
(MAN). If successful we would reduce the cost of accessing the Internet for this pool of users and
potentially for the whole country, assuming that the only Internet Service Provider (ISP) in Cuba,
ETECSA, a government monopoly, picks up on our idea as a way to improve Internet access.

”SNET”: Cuba’s DIY Internet Network

The SNET is a very complex Metropolitan Area Network (MAN), established in the late 90’s. It
has since seen exponential growth, allowing it to cover large portions of the city. The network has
five main regions in Havana, which in many instances overlap with each other since the only deter-
minant of a region is the Regional Pillar users are connected to. These regions have at least 1000
users each. They are called: Genetica (Western Havana), RoG (North-Western Havana), Wifinet
(Central Havana), Habana del Este (North-Eastern Havana), and Comunidad Sur (Southern Ha-
vana).

4



The Network architecture of the SNET is worth understanding due to its unusual design. The main
driver of this unique architecture is the DIY (Do It Yourself) idea that drives the network and the
way new users join. Up to 200 users are connected locally through Ethernet cables of up to 100m,
which go through streets and street electricity lines from one block to the other. All of these users
are connected to a Local Node. This Local Node is connected to one of the five Regional Pillars
through long-range directional WiFi, along with tens of other Local Nodes. Each of the Regional
Pillars is Peering with at least two other Regional Pillars, which allows for the whole city to be
interconnected without the use of the Internet.

Each Regional Pillar has at least an administrator. These administrators, along with skilled mem-
bers of the community have developed software for the network, including their own Facebook-like
social media, hacked versions of popular multi-player games such as ”Call of Duty” and have created
a dedicated browser. Therefore, integrating our User Interface as an extension into the network
would be a seamless process.

5



Methodology

We will now delve into the two elements of our project: the Network Architecture and the User
Interface, delving into the details of our implementation.

Network Architecture

In our network implementation, we have heavily drawn on the xCache architecture, although we
have added certain modifications in order to make it more efficient. The XCache architecture is
described in Figure 5 below. From xCache we use Edge Caches and Cloud Controller elements.
However, we add several modifications necessary for our network architecture to be relevant.

To web clients, an Edge Cache functions as an ordinary proxy or cache that receives users HTTP
requests and in the case of a cache hit, serves the objects directly. In the case of a cache miss,
the request is relayed to the Internet. ECs differ from conventional caches in two ways: First, ECs
are managed by a Cloud Controller and are periodically updated with web objects. Second, ECs
gather access logs and periodically send the aggregated statistics to the Cloud Controller. The
main goal of the Cloud Controller is to optimize the content of each EC by maximizing the ECs
hit rates while minimizing the bandwidth used to update them.[6]

The modifications we have added to the xCache architecture are as follows. First, the Edge Caches
behave in a Peer to Peer (P2P) manner, on what we initially called Distributed Edge Caching.
However, the term has been coined in other papers such as ”Distributed edge caching scheme con-
sidering the trade-off between the diversity and redundancy of cached content”[7] with a similar
meaning but without the P2P aspect to it. Therefore, we have decided to call it P2P Distributed
Edge Caching. In P2P Distributed Edge Caching each Edge Cache announces the pages they have
cached along with a time-stamp and version number, which other Edge Caches can request as
needed. There are two reasons for this decision. First, since different Edge Caches will serve differ-
ent sets of users they should each have a different set of pages cached. However, users served by one
of the Edge Caches might ask for a page that is already cached in one of the other Edge Caches.
By using a P2P architecture at the Edge Cache level we avoid a whole round trip to the Cloud
Controller and/or Internet, thus saving time and resources. Second, not every Edge Cache will

6



have the latest version of a certain web-page, which would force the Cloud Controller to update all
Edge Caches when updating a web page. However, by allowing Edge Caches to share information
among themselves the Cloud Controller only needs to update one Edge Cache and then that Edge
Cache will share that update as needed with the rest.

As a proxy, every Edge Cache will intercept the requests users make to the Internet. We have
chosen to implement this interception through a Man-In-The-Middle (MITM) proxy. MITM proxy
is an open-source library that allows to intercept network requests and responses. We interact with
the MITM proxy through a Python API, which has several modules: mitmproxy(), mitmweb(),
and mitmdump(). The first one, mitmproxy(), is a terminal interface that keeps track of the GET
and POST requests and allows developers to examine each request in-depth. The second one,
mitmweb(), is the same as a mitmproxy() but displayed in a web browser environment. The third
and final one, mitmdump(), is the one we use, and it is a simpler version of mitmproxy(), simply
writing the GET and POST requests directly into the output window in terminal. This added
simplicity allows us to write the traffic into a file and have more control over the MITM proxy
implementation. Moreover, this module allows us to add a certain level of personalization to the
behavior of MITM proxy. For this purpose, we developed a python script that controls the behavior
of the MITM proxy once the proxy intercepts GET and POST requests, which is one of the options
of the mitmdump() modules. The python script then interacts with our database set up, which
we have created in order to offer a cache framework for the program. For this database, we have
chosen to use a MySQL database, storing request URLs as primary key and the relative path of
the response files as the other two fields, making the database only store metadata. We have made
the decision of only storing metadata in the database in order to have the flexibility of changing
the actual response files. The response files are saved as two files, a header file (.h), storing the
HTTP response headers, and a content file (.c), storing the content. However, we do not store the
response files directly from the Internet. The response files are simplified by the Cloud Controller
using the JSLearner simplification software developed by our teammates Jacinta and Manesha,
which combines script labeling and URL blocking. That simplified versions of web pages are the
ones we store in the database.

It is also important the way we implemented the database, as several technical limitations lead us to
these decisions. Given that the primary key of any SQL database needs to indexed in order to offer
an access time of O(1), there is a length limitation of 256 characters for the index field. Request
URLs can be longer than 256 characters, which is the reason why we decided to hash the request
URLs, store the hashed URL requests in the database, and unhash them once we need to check
them. For GET requests, we unhash the request URL in order to check whether the request URL
has been cached in our database. If it has, we do not allow the request to make it past the proxy,
instead, we create a GET response at the proxy level and feed it the simplified cached version of the
response files. If it has not been cached, we allow the GET request to go through to the Internet as it
normally would. Once the GET response is sent back after some time, we store the response files in
our server and register their relative path in the database associated with their hashed request URL.

User Interface

In order to allow our users to interact with our cached pages, we came to the conclusion that we
needed to develop a User Interface that was both simple to use and lightweight. In order to address
the first requirement, we decided to go with a search engine implementation in the front end. We

7



fulfilled the second requirement by coding a simple search engine landing page in HTML, basic
CSS styling for the search bar, button, item lists, and thumbnails, as well as a background image.
Furthermore, our User Interface only uses one JavaScript function, which is used to generate the
GET request for the search term and to handle the POST response, by dynamically inserting the
thumbnails and URLs into list (li) HTML elements. It is important to note that our User Inter-
face could be deployed as a browser extension for Google Chrome and Firefox, as the most used
browsers globally. However, in the case of Havana, Cuba we would have not implemented the User
Interface as a Google Chrome or Firefox extension, as the Metropolitan Area Network (MAN) we
were targeting developed their own light-weight browser.

Our decision to search engine homepage stems from the standard user behavior of searching for
anything online and expecting to see the Google search results page when searching from the Google
homepage or from the browser search bar. Given the origin of our decision, we established the need
to mimic the standard searching behavior as much as possible. We mainly focused on making
our search engine ”smart”. Our primary goal was to deliver relevant results to any search terms
our users might type into our search bar. In order to satisfy these requirements, we decided to
develop a key-ranking algorithm. We used the Natural Language Toolkit (nltk) to rank the 5 most
frequent words in every website, removing any stop words like ”the” or ”and”, which would not
lead to relevant search results. Once deployed the Cloud Controller will run this script using a
headless Selenium script on every page it caches and simplifies. The resulting keywords along with
the domain name (for specific hits) will be stored in a MySQL database table in the Edge Cache.
This MySQL database will be different from the one used by the MITM proxy, as it will act as
the back-end of the User Interface. This database consists of the following fields: requests URL,
keywords, and relative path to the thumbnails associated with each URL. In the average scenario
the user will search for a keyword and relevant results literal or not will appear as a xlist right
below the search bar. The user will then be able to click on whichever link they wish to. That
request would be intercepted by our MITM proxy and the user would be served the cached version
of the page.

Design Choices

Given the requirements of our project we have had to compromise on certain aspects to meet the
large goal of providing an improved and inexpensive Internet experience to developing regions and
remote areas. Therefore, we had to make the following design choices:

The first decision we had to make was how to address the first time one or more users access a
certain website. Given that we need to fetch, simplify, register keywords, and cache the web page,
the request cannot be served instantly. In order to address this issue, we have made the decision
to tell the user to come back after a certain time (i.e., 20 minutes). We would then allow the page
to be processed by the Cloud Controller and cached by the user’s Edge Cache. If the page were to
be cached before our estimated time, we would notify the user accordingly

The second decision we were presented with was how to handle pages that require the user to Log
In. This is actually the hardest of the problems that we encountered. The issue is two-fold. First,
web pages that require logins generate a different front-end for each user, in terms of looks and
content. Trying to cache each version of web pages like Facebook or Instagram would be extremely
difficult, if not impossible. Second, this type of web page presents a large security risk for network

8



administrators. Users would have to disclose to the network administrators their usernames and
passwords. The effort to secure all of that information in addition to the potential legal implications
would have overtaken the rest of the project, not allowing us to focus on the actual goal of our
research project. Therefore, we have decided not to support pages that require Log In.

Results

Network Evaluations

As previously mentioned we expected to generate on the ground results in Havana, Cuba. How-
ever, we were not able to do so due to the global situation caused by the COVID-19 pandemic. As
an alternative, we decided to simulate the network conditions we would find in Cuba. However,
scholarly literature on the topic is nonexistent. As a consequence, we turned to other developing
countries in the hopes to extrapolate network conditions that would approach the average network
conditions in developing regions and remote areas. In deciding the network conditions we used
to simulate our results, we looked at the state of cellular data connectivity in India in 2014[8],
which led us to the following parameters: Downlink Bandwidth of 3,500 kbps; 5% of Downlink
Packets Dropped; and a Downlink Delay of 75 ms. These network conditions are inclusive of the
improvement in network conditions in developing regions since 2014.

Setting our network conditions to the aforementioned parameters, we evaluated Alexa’s Top 75
Popular web pages, both in their original and simplified versions, specifically looking at Page Load
Time (PLT), Page Size, and Number of Requests. We obtained this information from the HTTP
Archive format, or .har file, which is a JSON-formatted archive file format for logging of a web
browser’s interaction with a site. We extracted the .har files generated by the browser for each web
page. Before we extracted the .har file, we scrolled the web page from bottom to top to make sure
it was fully loaded. this process was first performed on the 75 original pages, which were requested
directly from the Internet using the Firefox Selenium webdriver. Once completed, we proceeded to
use the Firefox Selenium webdriver to request the simplified versions of the web pages through our
MITM Proxy Architecture, under the same network conditions.

0 50 100 150 200
Page load time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Original
Simplified

0 5 10 15
Page Size (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Original
Simplified

0 100 200 300 400 500 600
Number of Requests

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Original
Simplified

The leftmost plot represents the CDF results for different Page Load Time (PLT) of Alexa’s Top
75 web pages in their Original and Simplified versions. In the case of Simplified pages, we see a
Page Load Time (PLT) of about 20% in comparison with the Original versions. It is also important
to note that the maximum Page Load Time for the Simplified versions of the web pages is about
140 seconds, in comparison with the 200+ seconds that took the slowest of the Original versions of
the web pages. Regarding Page Size, we can observe the CDF result in the center plot. This is the

9



metric we observed improved the most. Our solution managed to reduce the Page Size of Simplified
versions to a maximum of about 7 MB, in comparison to a maximum of 18+ MB for the Original
versions. Furthermore, it managed a reduction of about 80% in the Page Size of web pages. Finally,
we can see the CDF results for the Number of Requests in the rightmost plot. As expected given
the PLT and Page Size CDF results, we also saw a significant reduction in the Number of Requests
in the Simplified versions of the web pages, with a maximum of about 300 requests per web page.
The evaluation showed a reduction of about 50% in the Number of Requests per web page. These
results are especially relevant as they confirm the effect we expected our solution would have in
benefiting users in developing regions and remote areas.

User Interface

Our User Interface was implemented in the aforementioned manner. It is now ready to be imple-
mented as a browser extension in Google Chrome, Firefox, or any other browser it needs to be used
in. We believe our User Interface is very intuitive as it closely resembles all other search engines,
including Google.com and Yahoo!. In the below figures, we can see two examples of the search
results our User Interface would yield from certain search terms, which showcases our relevant
keywords approach.

Figure 1: Homepage with search results for ”free”

10



Figure 2: Homepage with search results for ”cnn”

In the above figures, we can see some of the results displayed when the user searches for the word
”free” (Figure 1) and the results displayed when a user searches for the word ”cnn” (Figure 2). The
user is then able to click on the desired link and the cached version of the page would be served.
If the search yields no results the user can search for a domain and expect to find the cached web
page in the search results after some time (i.e, 20 minutes). The user will be notified if the web
page is cached in a shorter period of time.

Conclusion

We have found that our solution offers a reduced Page Load Time and Number of Requests, and
a greatly reduced Page Size, leading to a significant reduction in Internet Access costs. Our hope
is that our solution is implemented in Havana, Cuba, or any other community that might benefit
from this solution. We also encourage further research addressing the caching and simplification of
web pages that require Log In, such as social media.

11



References

References Cited

[1] S. Ahmad, A. L. Haamid, Z. A. Qazi, Z. Zhou, T. Benson, and I. A. Qazi, “A view from the
other side: Understanding mobile phone characteristics in the developing world,” Proceedings
of the 2016 ACM on Internet Measurement Conference - IMC 16, 2016.

[2] M. Ghasemisharif, P. Snyder, A. Aucinas, and B. Livshits, “Speedreader: Reader mode made
fast and private.” [Online]. Available: https://arxiv.org/abs/1811.03661

[3] R. Netravali, A. Goyal, J. Mickens, and H. Balakrishnan, “Polaris: Faster page loads using
fine-grained dependency tracking,” 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16). [Online]. Available: https://www.usenix.org/node/194917

[4] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, B. Yin, and et al., “Flywheel: Googles data compression proxy for the
mobile web,” 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). [Online]. Available: https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/agababov

[5] X. S. Wang, A. Krishnamurthy, and D. Wetherall, “Speeding up web page loads
with shandian,” USENIX Symposium on Networked Systems Design and Implementation
(NSDI 16). [Online]. Available: https://www.usenix.org/system/files/conference/nsdi16/
nsdi16-paper-wang-xiao-sophia.pdf

[6] A. Raza, Y. Zaki, T. Ptsch, J. Chen, and L. Subramanian, “xcache: Rethinking edge caching
for developing regions,” Proceedings of the Ninth International Conference on Information and
Communication Technologies and Development - ICTD 17, 2017.

[7] S. Wang, X. Zhang, K. Yang, L. Wang, and W. Wang, “Distributed edge caching scheme
considering the tradeoff between the diversity and redundancy of cached content,” pp. 1–5,
2015.

[8] Z. Koradia, G. Mannava, A. Raman, G. Aggarwal, V. Ribeiro, A. Seth, S. Ardon,
A. Mahanti, and S. Triukose, “First impressions on the state of cellular data connectivity
in india,” Proceedings of the 4th Annual Symposium on Computing for Development
- ACM DEV-4 13, 2013. [Online]. Available: https://www.researchgate.net/publication/
262362068 First impressions on the state of cellular data connectivity in India

12

https://arxiv.org/abs/1811.03661
https://www.usenix.org/node/194917
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/agababov
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/agababov
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-wang-xiao-sophia.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-wang-xiao-sophia.pdf
https://www.researchgate.net/publication/262362068_First_impressions_on_the_state_of_cellular_data_connectivity_in_India
https://www.researchgate.net/publication/262362068_First_impressions_on_the_state_of_cellular_data_connectivity_in_India

	Gabriel Garcia Leyva
	Computer Science Capstone Project
	Abstract
	Introduction
	Specific Aims
	Background
	Shandian
	xCache
	Understanding mobile phones characteristics in developing countries

	Goals and Potential Impact
	"SNET": Cuba's DIY Internet Network

	Methodology
	Network Architecture
	User Interface
	Design Choices

	Results
	Network Evaluations
	User Interface

	Conclusion
	References


