
Reducing Client-Side JavaScript Evaluation with
JSAnalyze

Jacinta Hu
Computer Science, NYUAD

jacinta.hu@nyu.edu

Advised by: Yasir Zaki

ABSTRACT
JavaScript evaluation is one of the most costly and time-
consuming parts of loading a web page. This project intro-
duces a tool called JSAnalyze which automatically analyzes
a web page to determine what JavaScript can be removed
without impacting the user experience. JSAnalyze allows
users to better understand the scripts present in their web
pages and verify or alter the script removal choices made
by the tool before saving the simplified page to an external
proxy for future retrieval. Analyzing 100 popular web pages
using JSAnalyze showed a reduction in overall Page Load
Time of more than 30% on mobile devices while retaining
more than 90% of the original page content, as evaluated by
a user study of 22 users.

KEYWORDS
JavaScript, optimization, web page, user experience, human-
computer interaction

Reference Format:
Jacinta Hu. 2020. Reducing Client-Side JavaScript Evaluation with
JSAnalyze. In NYUAD Capstone Project 2 Reports, Spring 2020, Abu
Dhabi, UAE. 8 pages.

1 INTRODUCTION
The current status of the World Wide Web (WWW) shows
an increasing trend in accessing web pages via handheld
mobile devices [8], which is referred to as Mobile Web [17].
Since web pages were originally designed for desktop/laptop
computers, the mobile web user experience has become a

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 2, Spring 2020, Abu Dhabi, UAE
© 2020 New York University Abu Dhabi.

major concern due to two main reasons: the complexity of
the pages, and the processing limitations of mobile devices.
The increasing complexity of the web pages has caused

considerable increases in Page Load Times (PLTs) [27], which
are mainly affected by the download cost of pages’ resources
and their associated processing cost. During the last decade,
the total average download size per page has increased by
300% [5].

Among all downloaded resources, the most dominant cat-
egory in browser processing is JavaScript. This is because
byte-for-byte, the parsing and execution of JavaScript is more
computationally expensive than that of any other web re-
source [24].
Despite its impact in performance degradation of web

pages, the current status of theWWW shows a median use of
18 external JavaScript elements on mobile and 19 on desktop.
These elements triple the processing time on mobile devices
compared to desktop computers [2].

In this paper, we propose JSAnalyze as a tool to help web
page owners simplify an existing page for mobile web. This is
achieved by removing all non-essential JavaScript elements
from the existing page without sacrificing page content. JS-
Analyze allows users to enable or disable each script element
on a web page via a Graphical User Interface (GUI) and see
these changes in a side-by-side comparison between the
original page and the modified page.

2 RELATEDWORK
As web pages become increasingly complex, research has
turned towards addressing this growing issue, and partic-
ularly to reducing PLT [23]. Some researchers have found
ways of recreating the dependency graph of a web page to
better study the inefficiencies present in modern web pages.
Wprof is an in-browser profiler that details the dependency
graph of a page load, and the researchers who created it
found that JavaScript plays a significant role in page load
time by blocking HTML parsing [25]. Shandian attempts to
improve PLT by restructuring the page-load process [26], and
Polaris builds upon that with the help of Scout, which tracks



Capstone Project 2, Spring 2020, Abu Dhabi, UAE Jacinta Hu

Figure 1: JSAnalyze User Interface: From entering a URL to generating a simplified page for mobile web.

JavaScript variables to identify fine-grained dependencies
[22].
Other research has proposed entirely new web specifica-

tions, such as GAIUS, a content ecosystem targeted specifi-
cally for developing regions which suffer most from the cost
of JavaScript [14]. Google has also attempted to tackle the
complexity of modern web pages through Google Acceler-
ated Mobile Pages (AMP) [18], which redefines how pages
should be written. In a recent work, the authors presented
the first characterization of the impact of AMP pages on the
user experience [20]. A major difference between JSAnalyze
and GAIUS and AMP is that GAIUS and AMP provide frame-
works for developers to create new pages, whereas JSAnalyze
aims to optimize existing pages for the mobile web.
JSAnalyze aims to fill the gap in existing tools [16, 21]

which allow for JavaScript debugging in web pages without
attempting to identify the main functionality of each of the
embedded elements. JSAnalyze optimizes JavaScript usage
in web pages according to the detected functionality of each
JavaScript element embedded in these pages.

3 IMPLEMENTATION
JSAnalyze is built using wxPython, a cross-platform GUI
toolkit for the Python language [9], and SeleniumWebDriver,
an open-source browser automation tool [7] on top of the
Google Chrome web browser. Through interacting with the

GUI, the user can request a web page for analysis, remove
unnecessary scripts, and save the simplified version of the
page to a remote proxy for future retrieval, as seen in Figure 1.
JSAnalyze implements proxies using mitmproxy [12], a free
and open-source interactive HTTPS proxy, and the saving of
the page is enabled using an Apache web server set up with
the Common Gateway Interface (CGI). This section contains
detailed descriptions of each of JSAnalyze’s functions and
components.

JSAnalyze performs three main functions:

(1) Detailed script analysis: JSAnalyze displays detailed
information about the scripts used in a web page and
the ways in which these scripts are used.

(2) Real-time script pruning: JSAnalyze allows a user to
toggle individual scripts to visualize how they affect
the look and feel of a web page.

(3) Simplified page creation: JSAnalyze allows a user to
simplify and save a page to an external proxy with
unnecessary JavaScript removed, speeding up page
load.

3.1 Detailed Script Analysis
JSAnalyze’s detailed script analysis includes the script body,
prettified and view-able in the GUI window; the network
dependencies of the script, represented in the horizontal



Reducing Client-Side JavaScript Evaluation with JSAnalyze Capstone Project 2, Spring 2020, Abu Dhabi, UAE

tree arrangement of the scripts; and script categorizations,
viewed as labels next to the script names.

3.1.1 Script Body. JSAnalyze uses Selenium WebDriver to
fetch and load the requested URL in Chrome. Unfortunately,
Selenium does not have direct access to the JavaScript files
that are evaluated during the page load. To access the JavaScript
files for further script analysis, the Selenium performance
log containing all network activity is parsed for the script
sources, which are then requested using Chrome Devtools
Protocol (CDP) [3]. The content of these scripts is then pret-
tified using jsbeautifier [10] and saved locally. The content
of a particular script is displayed in the GUI when the user
clicks the button corresponding with that script. Although
a similar result can be achieved using Chrome Devtools di-
rectly, displaying the script in the GUI prevents the user from
having to leave the GUI to see the script content.

3.1.2 Network Dependencies. When the user requests the
URL of a web page from JSAnalyze’s GUI, the user is then
presented with a multilevel list of all of the scripts that were
run or requested during the page load as seen in Figure 1.
The levels of the list show the network dependencies of each
script. If script A is downloaded as a result of script B, then
script A will be listed under script B with a higher indenta-
tion level. This network dependency tree is built by parsing
the Selenium performance log for each script call and con-
necting each script to the parent script that called it. The tree
gives users a clearer picture of the chain of cause and effect
in the page load. Although this tree is generated with calls to
CDP, Chrome Devtools does not currently have any compa-
rable visualization of the network dependency tree. Chrome
Devtools does include a Waterfall breakdown of network
activity which shows when resources are loaded [15], but it
does not show how network resources are interconnected
the way that JSAnalyze does.

3.1.3 Script Categorization. Each script detected by JSAna-
lyze is also given a colour-coded label to specify its category.
Third-party scripts are categorized into broad categories such
as ad, analytics, social, and video. The full list of categories
was taken fromWeb Almanac’s [2] third-party provider cate-
gories, and colour combinations were taken from Third Party
Web’s open-source database [19]. JSAnalyze determines what
category each script belongs to using a random forest clas-
sifier developed by Vladyslav Cherevkov. If the classifier is
unable to determine a category with greater than a given
confidence threshold, then the script is then classified as crit-
ical or non-critical using a clustering algorithm developed
by Waleed Hashmi. The confidence threshold is set to 50%
by default, but can be specified by the user depending on
their preferences.

3.2 Real-time Script Pruning
Once all of the script information for a web page has been
loaded, JSAnalyze allows the user to enable and disable indi-
vidual scripts and see how the presence or absence of differ-
ent combinations of scripts affects the page’s appearance and
functionality. This is achieved through side-by-side browser
windows, as in Figure 2, where the right window fetches the
original page from the remote proxy, and the left window
fetches the simplified page from the local proxy.

Figure 2: Side-by-side browser windows allow for easy
comparison.

By default, JSAnalyze disables scripts in the ad, analytics,
customer-success, marketing, and non-critical categories as
classified during the script categorization, but these cate-
gories can be specified by the user depending on their prefer-
ences. In the JSAnalyze GUI, users can then choose to toggle
specific scripts on and off and reload the modified page to
see how the changes compare to the original page. JSAnalyze
maintains the dependencies discovered while building the
network dependency tree, and ensures that disabling a script
means that all of its descendants will no longer be requested.
Likewise, it is not possible to enable a script without first
enabling its ancestors.
The rest of this subsection describes how the proxies in

JSAnalyze are used to fetch and simplify web pages. This
is then followed by further details about the way JSAna-
lyze handles the enabling and disabling of different types of
scripts.

3.2.1 Proxy Server. A remote proxy server was used so that
requested resources could be cached, allowing for faster serv-
ing of web pages. When a previously unseen resource is re-
quested, the proxy fetches the resource, encodes and saves
the data, and creates a new entry in the SQL database to map
the URL to the local filename before serving the resource to
the user. The next time a user requests the same resource, the
proxy simply looks up the URL in the SQL table and serves
the resource from its database without having to make a
request to the web server hosting the resource. Caching also



Capstone Project 2, Spring 2020, Abu Dhabi, UAE Jacinta Hu

ensures that the page requested does not change during com-
parison and evaluation. The page saved in the remote proxy
is static, whereas the original page on the internet is subject
to changes at any time.

The remote proxy ensures that the original page remains
the same for evaluation, but for enabling and disabling of
inline scripts, a local proxy is used. This decision was made
so that multiple users could analyze the same page at the
same time through connecting to the remote proxy without
affecting the local script changes of JSAnalyze. The local
proxy also ensures that if the connection to the remote proxy
is unstable, scripts can still be enabled and disabled because
everything is done locally.

3.2.2 Types of Scripts. When a user fetches a web page, the
web server hosting the page first returns the index.html file
to the user. Then, as the user’s browser parses the HTML file,
it may encounter links to other additional source files. These
can be additional HTML documents, CSS files, snippets of
JavaScript, or other resources. The browser then makes ad-
ditional network requests to get these files and incorporates
them into the page load once they have been received.
Based on the procedure described above, all JavaScript

involved in a page load can be placed into two categories: in-
line scripts and external scripts. Inline scripts are JavaScript
that is included directly in the web page’s index.html file
as HTML <script> tags. External scripts may also exist as
<script> tags, but instead of having the script content placed
between the starting <script> and ending </script> tags,
the <script> tag contains an additional attribute that links to
a location on the web where the script content can be found.
In this case, the browser’s parsing of HTML must be paused
until that resource is fetched and evaluated. External scripts
can also be found in the index.html file as preloaded <link>
tags with an additional script attribute. Because inline and ex-
ternal scripts are loaded in different ways, different methods
of script extraction and deactivation needed to be developed
for each script category when creating JSAnalyze.

Inline scripts. Inline scripts are detected by parsing the
original index.html file and looking for placeswhere<script>
tags appeared. In JSAnalyze, the content between each of
the script tags is numbered and stored in a local variable
so that it can be displayed later. At the local mitmproxy,
each instance of the <script> tag is replaced with a num-
bered comment so that the script can later be reactivated
in the same place. This JavaScript-stripped version of the
index.html file is also stored in the local proxy’s database so
that it can easily be retrieved and altered later. When the user
selects the numbered inline scripts that they want enabled,
the numbers associated with these scripts are included as
arguments in the URL request to the proxy. The proxy server
then processes this request by parsing the URL, retrieving

the script-free version of the index.html file for the website
requested, and uncommenting the scripts that match the
requested script numbers.

External scripts. Some external scripts can be detected by
looking at the src attributes of the <script> tags in the in-
dex.html file, but JavaScript code can also generate URLs
and fetch additional external resources. Simply looking for
a script source in the HTML tag will not account for all of
the other resource URLs that are created dynamically and
requested when the JavaScript code is evaluated. Addition-
ally, any external scripts that are requested by the index.html
file may go on to request even more scripts of their own,
resulting in multiple layers of script calls that would require
additional evaluation of each external script in order to detect
all of the external scripts. JSAnalyze detects external scripts
by parsing the network activity logged by Chrome. This in-
cludes external scripts with the source included as a <script>
tag attribute, external scripts fetched during preload using
the <link> tag, and external scripts requested dynamically
through the evaluation of other scripts. When the user se-
lects the external scripts that they want enabled, the list
of external scripts that are not enabled are blocked by the
browser using CDP.

3.3 Simplified page creation
Once the user is satisfied with the changes they have made
to the web page, they can save a copy of the simplified page
to the remote server for future retrieval and further analysis.
JSAnalyze saves a copy of the simplified page locally, and
then uses anApache CGI call to upload the page to the remote
server. When the simplified page is re-requested, the remote
proxy serves the simplified index.html page and performs
the external script blocking at the proxy level so that blocked
scripts do not need to be sent over the network all the way
to the client.

4 EVALUATION
In order to evaluate the effectiveness of JSAnalyze, we used
JSAnalyze to analyze, simplify, and save 100 popular web
pages listed by Alexa [13]. These pages were then evalu-
ated for similarity and for speed. To evaluate the similarity
of the simplified page to the original page, we conducted
a user study and also computed similarity scores automati-
cally using JSQual. To evaluate the PLT of the original pages
and the simplified pages, we used Lighthouse [11] and web-
pagetest [1] metrics. To isolate the effect of limited computa-
tion power on page load, these evaluations were conducted
on real mobile phones. A Xiaomi Redmi Go was used to rep-
resent low-end mobile device, and a Samsung Galaxy S8+
was used to represent a high-end mobile device. For this
evaluation, the focus was on JavaScript evaluation reduction,



Reducing Client-Side JavaScript Evaluation with JSAnalyze Capstone Project 2, Spring 2020, Abu Dhabi, UAE

so network bandwidth was not tampered with to simulate
different network conditions.

4.1 Similarity Evaluation
4.1.1 User Study. Twenty-two users were recruited from
NYUAD and informed to spend a maximum of 30 minutes on
evaluating the similarity of two pages that were shown side-
by-side. The user study was conducted online, with all the
required explanations available on the evaluation page. Users
were asked to evaluate as many pages as they could within
30 minutes. An institutional review board (IRB) approval was
given to conduct the user study, and all the team members
have completed the required research ethics and compliance
training, and were CITI [4] certified.

Figure 3: Screenshot of the online user study.

The recruited users were asked to evaluate the similarity
between the two versions of the pages, by providing answers
to the following questions (Figure 3):

• Rate the look similarity, styling and beautification (on
a scale from 0 to 10)

• Rate the content similarity (on a scale from 0 to 10)
• In the case of missing content, mention all types of
missing content that apply: (text, images, advertise-
ments, video, layout/beautifiers, other embeds (tweets,
maps and etc.))

4.1.2 JSQual. JSQual is a structural similarity comparison
tool developed by Waleed Hashmi that was used to compute
the structural similarity between the original pages and the

simplified pages. It computes the similarity not only for the
static view of the page, but also takes the effect of some of the
page functionality into consideration. Details of JSQual (in-
cluding source code) can be found on the Github repository
[6].

4.1.3 Results. Figure 4 is a combined Cumulative Distribu-
tion Function (CDF) of the similarity scores computed by
JSQual and the user scores collected during the study. The re-
sults show that about 90% of simplified pages exhibit greater
than 90% structural similarity to their original counterparts,
determined by both JSQual and the user study. The results
also show that JSQual computes a comparable similarity
score to the user study scores, with minor differences. It
can be seen that JSQual is generally less forgiving that the
real evaluators (users), evident by the smooth and gradual
increase of the scores between the 90% to 100% similarity
score range. In contrast, the user study results show a sudden
and sharp increase in the score within the same segment.
There are multiple reasons behind this: 1) real users tend to
overlook minute and small differences between pages, 2) real
users are more forgiving when giving scores when major
parts of the page match the original, and 3) JSQual also takes
into account the effect of actionable tags when comparing
the differences between the pages. Another interesting fact
seen in the figure, is that the worst score given by human
evaluators was somewhere around 65% compared to 40%
in JSQual. Low JSQual similarity scores are most likely the
result of removing ads that we deemed unnecessary and un-
helpful to the user experience, but that JSQual had no way
of differentiating from important content.

Figure 4: CDF of similarity scores.

4.2 Speed Evaluation
4.2.1 Lighthouse. In this evaluation, we focused on three
different metrics from the Lighthouse report:



Capstone Project 2, Spring 2020, Abu Dhabi, UAE Jacinta Hu

• First Meaningful Paint (FMP): a measure of when the
primary content of a page is visible to the user. This
metric measures the time in seconds from when the
user initiates the page load to when the page renders
the primary above-the-fold content.

• Speed Index: a measure of how quickly page content is
visually displayed during page load. This is calculated
by taking a video of the screen during page load and
measuring its completeness at each time interval.

• Time-to-Interactive (TTI): a measure of how long it
takes a page to become fully interactive. This metric
measures the time in seconds from when the user ini-
tiates the page load to when the page displays useful
content that is responsive to user interaction within
50 ms.

Figure 5 shows the CDF and box plot of the above Light-
house metrics for the 100 pages evaluated using the Samsung
high-end device. Although there is little improvement in the
FMP, there is some improvement in the speed index as seen
in the slight gap between the solid and dotted blue lines in
the CDF, and a significant improvement in TTI. The median
TTI for the simplified pages has reduced to 40% of that of
the original pages.

Figure 5: High-end device Lighthouse metrics.

Figure 6 shows the CDF and box plot of the selected Light-
house metrics for the 100 pages evaluated using the Xiaomi
low-end device. Here, the FMP and speed index show clearer
improvements for the simplified pages, and the median TTI

for the simplified pages has reduced to almost 50% of that of
the original pages.

Figure 6: Low-end device Lighthouse metrics.

Figure 7 shows the average overall Lighthouse perfor-
mance scores of the original and simplified pages for the
low-end and high-end devices. The Lighthouse performance
score is a weighted average of all of the different Lighthouse
metrics, each scored out of 100. These scores are scored rela-
tive to real websites based on data from the HTTP Archive
[5]. A score of zero represents the lowest possible score,
whereas a score of 100 indicates that the page is in the
ninety-eighth percentile of websites for that metric. The fig-
ure shows that simplifying pages using JSAnalyze improves
the overall Lighthouse performance of pages by over 35% for
the high-end phone, and almost 90% for the low-end phone.
In both cases, the average score has been improved from a
slow (red) score to a moderate (orange) one.

4.2.2 Webpagetest. In this evaluation, we focused on three
different metrics from the webpagetest results:

• DOM Interactive: thismarks the pointwhen the browser
has finished parsing all of the HTML and the DOM
construction is complete.

• Document Complete: this marks the point when the
browser onLoad event fires, which generally means
that all of the static content of the page has loaded.
Any activity beyond the Document complete comes
from JavaScript loading some dynamic content.



Reducing Client-Side JavaScript Evaluation with JSAnalyze Capstone Project 2, Spring 2020, Abu Dhabi, UAE

Figure 7: Overall performance metric score.

• Fully Loaded: this marks the point when the network
has been idle for about 2 seconds.

Figure 8 shows the CDF of the selected webpagetest met-
rics for the 100 pages evaluated using the Samsung high-end
device, and Figure 9 shows the corresponding metrics using
the Xiaomi low-end device. Due to the greater processing
power of the high-end device, the PLT metrics are faster for
all metrics on the high-end device than the low-end device.
However, on both graphs, it is clear that there is a significant
reduction in PLT for the simplified page for all metrics. The
document complete and fully loaded metrics are reduced by
33% for the low-end device. Using JSAnalyze to simplify web
pages improves PLT in every scenario.

Figure 8: High-end device webpagetest metrics.

5 DISCUSSION
5.1 Large Labeled JavaScript Dataset
One of the potentials of using JSAnalyze is the ability to
create a large dataset of labeled JavaScript elements. These
elements can be crawled from the most popular pages, and

Figure 9: Low-end device webpagetest metrics.

these pages can be distributed via a crowd-sourcing platform.
This approach can help in distributing the labeling and gen-
erating a large set of labeled data, which can then be used to
expand the machine learning classification approach beyond
the current dataset. In addition, the tool analysis part can
be extended to give the user the chance to modify existing
labels, as well as adding their own custom labels. By doing
so we can fine-grain the data set labels and enhance the ac-
curacy of the machine learning model. This would enable
removing the human role from the loop for a fully automated
tool that can simplify web pages based on machine learning.

5.2 Mobile Web Optimization and a
Browser Extension

As seen earlier, JSAnalyze can be utilized to create lighter
versions of web pages, not only to aid users with limited
connectivity or low processing conditions, but also to en-
hance the entire mobile web browsing experience based on
user preferences. JSAnalyze can help in identifying different
classes of JavaScript elements, such that web developers can
rapidly generate optimized versions of their pages and make
them available for mobile web users. On the other hand, in-
stead of using existing JavaScript-blocking extensions where
users have to either explicitly specify domain names/host
URLs, or to block a specific known class of JavaScript (such
as Ads or trackers), JSAnalyze can aid the development of
a browser extension where users can block JavaScript ele-
ments based on their predicted categories, according to the
user preferences.

5.3 Bridging the Digital Divide
Billions of people in developing countries rely on handheld
mobile devices to access the web. Users in these countries
are not only plagued with poor infrastructure, but they also
can not afford to use high-end smartphones. Thus, JSAnalyze
has a massive potential in simplifying web pages for those
users to enhance their browsing experience. One of the main



Capstone Project 2, Spring 2020, Abu Dhabi, UAE Jacinta Hu

challenges behind using JSAnalyze at a large scale is the fact
that it needs to be utilized by web developers around the
globe in order to create optimized web pages. However, by
using a fully automated approach of JSAnalyze without the
human in the loop, web pages can be simplified without the
intervention of the web developers. JSAnalyze in its simplest
form, can merely automatically update the list of JavaScript
links to be blocked by a browser extension.
The next challenge is to enable a central server to con-

tinuously analyze and generate the updated list. One of the
ways to address this challenge is to rely on the users in the
developed world to aid the simplification and the generation
of this list. Users in developed countries can simply install
the JSAnalyze browser plugin to analyze the pages they reg-
ularly visit and share the analysis reports with the central
server. The central server can then be utilized by users in
developing countries in order to improve their browsing
experience.

6 CONCLUSION
JSAnalyze is an analysis environment that aims to optimize
JavaScript usage in modern web pages. This analysis can
aid web developers and content providers in making op-
timization decisions on their pages to create lighter ver-
sions for the mobile web. In this paper, we demonstrated
how the optimized JSAnalyze pages outperform the origi-
nal pages in multiple aspects, while maintaining the visual
content and the interactive functionality of these pages. JS-
Analyze is open-source, and the source code can be found at
https://github.com/comnetsAD/JS_Analyzer.

REFERENCES
[1] 2018. webpagetest. https://www.webpagetest.org. Accessed: 2020-03-

26.
[2] 2019. The 2019WebAlmanac. https://almanac.httparchive.org/en/2019.

Accessed: 2019-12-14.
[3] 2019. Chrome DevTools Protocol Viewer. https://chromedevtools.

github.io/devtools-protocol. Accessed: 2019-11-07.
[4] 2019. CITI Program - Collaborative Institutional Training Initiative.

www.citiprogram.org. Accessed: 2019-10-10.
[5] 2019. HTTP Archive. https://httparchive.org. Accessed: 2019-09-10.
[6] 2019. JSQual. https://github.com/comnetsAD/autoComparisonTool.

Accessed: 2019-11-27.
[7] 2019. Selenium. https://selenium.dev. Accessed: 2019-12-14.
[8] 2019. The State of Mobile Internet Connectivity 2019. https:

//www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/
07/GSMA-State-of-Mobile-Internet-Connectivity-Report-2019.pdf.
Accessed: 2020-03-17.

[9] 2019. wxPython. https://wxpython.org. Accessed: 2019-12-14.
[10] 2020. JavaScript Beautifier. https://beautifier.io. Accessed: 2020-05-14.
[11] 2020. Lighthouse. https://developers.google.com/web/tools/lighthouse.

Accessed: 2020-03-26.
[12] 2020. mitmproxy. https://mitmproxy.org. Accessed: 2020-05-14.
[13] 2020. The top 500 sites on the web. https://www.alexa.com/topsites.

Accessed: 2020-01-03.

[14] Talal Ahmad, Yasir Zaki, Thomas Pötsh, Jay Chen, Arjuna Sathiaseelan,
and Lakshminarayanan Subramanian. 2019. GAIUS: A New Mobile
Content Creation and Diffusion Ecosystem for Emerging Regions. In
Proceedings of the Tenth International Conference on Information and
Communication Technologies and Development (Ahmedabad, India)
(ICTD ’19). ACM, New York, NY, USA, Article 34, 5 pages. https:
//doi.org/10.1145/3287098.3287130

[15] Kayce Basques. 2020. Inspect Network Activity in Chrome De-
vTools. https://developers.google.com/web/tools/chrome-devtools/
network/#load. Accessed: 2020-05-14, Updated: 2020-05-07.

[16] Google Developers. 2019. Chrome DevTools. https://developers.google.
com/web/tools/chrome-devtools. Accessed: 2020-05-01.

[17] Maximiliano Firtman. 2016. High Performance Mobile Web: Best Prac-
tices for Optimizing Mobile Web Apps. "O’Reilly Media, Inc.".

[18] Google. 2019. AMP is a web component framework to easily create
user-first web experiences - amp.dev. https://amp.dev. Accessed:
2019-05-05.

[19] Patrick Hulce. 2019. Third-Party Web. https://www.thirdpartyweb.
today/about. Accessed: 2019-11-27.

[20] Byungjin Jun, Fabián E Bustamante, Sung YoonWhang, and Zachary S
Bischof. 2019. AMP up your Mobile Web Experience: Characterizing
the Impact of Google’s Accelerated Mobile Project. In The 25th Annual
International Conference on Mobile Computing and Networking. 1–14.

[21] Mozilla and individual contributors. 2005. Firefox Developer Tools.
https://developer.mozilla.org/en-US/docs/Tools. Accessed: 2020-05-01.

[22] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrish-
nan. 2016. Polaris: Faster Page Loads Using Fine-grained Depen-
dency Tracking. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). USENIX Association, Santa
Clara, CA. https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/netravali

[23] Ravi Netravali, Vikram Nathan, James Mickens, and Hari Balakrishnan.
2018. Vesper: Measuring Time-to-Interactivity for Web Pages. In 15th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18). USENIX Association, Renton, WA, 217–231. https://www.
usenix.org/conference/nsdi18/presentation/netravali-vesper

[24] Addy Osmani. 2017. The Cost Of JavaScript - Dev Channel -
Medium. https://medium.com/dev-channel/the-cost-of-javascript-
84009f51e99e. Accessed: 2020-01-05.

[25] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. 2013. Demystifying Page Load Performance
with WProf. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). USENIX,
Lombard, IL, 473–485. https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/wang_xiao

[26] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016.
Speeding up Web Page Loads with Shandian. In 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 16).
USENIX Association, Santa Clara, CA, 109–122. https://www.usenix.
org/conference/nsdi16/technical-sessions/presentation/wang

[27] Yasir Zaki, Jay Chen, Thomas Pötsch, Talal Ahmad, and Lakshmi-
narayanan Subramanian. 2014. Dissecting Web Latency in Ghana. In
Proceedings of the 2014 Conference on Internet Measurement Conference.
241–248.

https://github.com/comnetsAD/JS_Analyzer
https://www.webpagetest.org
https://almanac.httparchive.org/en/2019
https://chromedevtools.github.io/devtools-protocol
https://chromedevtools.github.io/devtools-protocol
www.citiprogram.org
https://httparchive.org
https://github.com/comnetsAD/autoComparisonTool
https://selenium.dev
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/07/GSMA-State-of-Mobile-Internet-Connectivity-Report-2019.pdf
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/07/GSMA-State-of-Mobile-Internet-Connectivity-Report-2019.pdf
https://www.gsma.com/mobilefordevelopment/wp-content/uploads/2019/07/GSMA-State-of-Mobile-Internet-Connectivity-Report-2019.pdf
https://wxpython.org
https://beautifier.io
https://developers.google.com/web/tools/lighthouse
https://mitmproxy.org
https://www.alexa.com/topsites
https://doi.org/10.1145/3287098.3287130
https://doi.org/10.1145/3287098.3287130
https://developers.google.com/web/tools/chrome-devtools/network/##load
https://developers.google.com/web/tools/chrome-devtools/network/##load
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://amp.dev
https://www.thirdpartyweb.today/about
https://www.thirdpartyweb.today/about
https://developer.mozilla.org/en-US/docs/Tools
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi18/presentation/netravali-vesper
https://www.usenix.org/conference/nsdi18/presentation/netravali-vesper
https://medium.com/dev-channel/the-cost-of-javascript-84009f51e99e
https://medium.com/dev-channel/the-cost-of-javascript-84009f51e99e
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang

	Abstract
	1 Introduction
	2 Related Work
	3 Implementation
	3.1 Detailed Script Analysis
	3.2 Real-time Script Pruning
	3.3 Simplified page creation

	4 Evaluation
	4.1 Similarity Evaluation
	4.2 Speed Evaluation

	5 Discussion
	5.1 Large Labeled JavaScript Dataset
	5.2 Mobile Web Optimization and a Browser Extension
	5.3 Bridging the Digital Divide

	6 Conclusion
	References

