
Understanding Javascript Code using Machine
Learning
Maria Jaramillo

Computer Science, NYUAD

maria.jaramillo@nyu.edu

Advised by: Yasir Zaki, Moumena Chaqfeh, Riyadh Baghdadi

ABSTRACT
This paper aims to test the accuracy of Github’s CodeXGlue
model, which predicts the purpose of code for its autocom-

plete functions. To do this, thousands of Stack Overflow

questions and highest-voted answers were scrapped and

used to train my own transformer model. Then, scripts from

ten websites — separated into functions — were used to com-

pare the labels assigned by each model. Results showed that

Github’s model can be augmented using other sources of

data — in addition to code hosted on Github — to train the

model.

KEYWORDS
web simplification, Javascript, NLP, machine programming,

CodeBERT, transformers

Reference Format:
Maria Jaramillo. 2021. Understanding Javascript Code using Ma-

chine Learning. In NYUAD Capstone Project 2 Reports, Fall 2021, Abu
Dhabi, UAE. 8 pages.

1 INTRODUCTION
The growing amount of publicly available code has moti-

vated research into the use of deep learning to predict the

functionality of code functions. Microsoft’s and Github’s

Copilot is one of the first AI programmers that helps people

write code faster by drawing context from written code and

suggesting additions. I aim to replicate and identify areas

of improvement in existing predictive deep learning models.

Finally, by understanding the functionality of a website’s

inline scripts, I can also contribute to an existing tool that

This report is submitted to NYUAD’s capstone repository in fulfillment of

NYUAD’s Computer Science major graduation requirements.

Capstone Project 2, Fall 2021, Abu Dhabi, UAE
© 2021 New York University Abu Dhabi.

simplifies Javascript and HTML to increase website speed:

JSCleaner.

1.1 Objectives
1.1.1 Providing insight on existing models and datasets.
CodeXGlue is a Code-to-Text model built by Microsoft and

Github. In their research, they used an existing transformer

model called CodeBERT and trained it with code hosted on

Github and their respective docstrings. Since their training

data consisted of complete, organized, and possibly code-

reviewed functions, I wanted to investigate how their model

would perform on a more convoluted dataset.

In an effort to train the CodeBERT model on code that

would most likely be replicated by developers, Stack Over-

flow data was used. To provide evidence on the performance

of Github’s model and ours, I asked students to rate its pre-

dictions on inline scripts found in ten of the most visited

websites. Given that Stack Overflow’s code lacks the same

completeness and organization as the Github dataset, analyz-

ing the predictions of the existing Github model will provide

interesting insight that has not been explored previously.

Likewise, the Stack Overflow dataset can complement previ-

ous datasets and be used to strengthen future Code-to-Text

predictive models.

1.1.2 Contributing to JSCleaner. The growing complexity

of mobile web pages has motivated research on the simpli-

fication of both Javascript and HTML to increase website

speed. JSCleaner promises to declutter Javascript without

impacting a website’s design or functionality by labeling

web page elements as critical or non-critical and then re-

moving the non-critical ones so the browser can load faster.

There are particular website elements, like the social media

section, that are non-critical to the user. By predicting the

functionality of script tags within a website’s index file, non-

critical elements can be identified before rendering, further

improving JSCleaner’s accuracy and speed.

Previous work done as a contribution to JSAnalyzer has

focused on predicting the functionality of a script based

Capstone Project 2, Fall 2021, Abu Dhabi, UAE Maria

on the visual output. In other words, students have used

computer vision to come up with website labels that will

determine whether a script is critical or not. However, I

aimed to build a model that could predict results based solely

on the code.

1.1.3 Code Similarity Research. In addition, my research

complements Jahnae Miller’s research, which aims to mea-

sure the similarity between the scripts of today’s most pop-

ular websites [Mil20] . By identifying how much code is

copied from Stack Overflow, I can cross-reference similar

code snippets and automatically propagate the labels pro-

vided by my model. This, in turn, will facilitate JSCleaner’s

ability to predict whether a script is critical or not.

2 RELATEDWORK
2.1 Code2Vec
This project began taking shape after reading about Code2Vec,

a neural network for learning distributed representations of

code. The model, originally built for Java, takes a snippet

of code and predicts the function name. It achieves this by

first representing the code as an AST (Abstract Syntax Tree),

which produces syntactic paths that can capture patterns.

To identify which extracted paths were the most important,

Code2Vec uses a novel attention network architecture, a

technique that has gained popularity in machine translation.

The attention model is able to identify which paths in the

AST are the most important. [Kar+17]

The model is also fed a collection of method name em-

beddings that will produce semantically similar vectors. For

example, bubbleSort and sort can be likely labels for a snippet

of code that is sorting. Rather than returning a single label

for each snippet, the model returns a list of labels along with

their probabilities.

Code2Vec’s approach achieves its success through a fairly

simple model combined with an evaluation dataset of 14M

code snippets. This massive dataset is one of the reasons I

did not choose to fine-tune the Code2Vec model to fit my

needs. Not only was the model built for Java, but it also

used a dataset much bigger than ours. Though there exist

some extensions to Code2Vec that include Javascript models,

I don’t have an equivalent collection of name embeddings

that fit my purpose. I cannot use their name embeddings

because I am not interested in naming a function but rather

producing a more descriptive output that can explain the

purpose of the code. Finally, the extensions available for

Javascript have a considerable lack of documentation and

have not been updated in several years.

2.2 Novel Code Similarity
The Novel Code Similarity System (MISIM) uses a context-

aware semantic structure to represent snippets of code and

then assigns a similarity score through an algorithm that

uses various neural networks. This paper is particularly inter-

esting because it 1) provided a different approach to prepro-

cessing code than using an AST, and 2) it achieved extremely

high accuracy in scoring code similarity, the second goal of

my research.

The model proposes a context-aware semantic structure,

which is different from an AST because it is less dense and

therefore reduces the chance of misleading code similarity

systems into memorizing syntax. Instead, it uses a code’s

meaning rather than its syntax.

This novel representation is combined with a highly com-

plex architecture of neural networks to produce results up

to 43x more accurate than Code2Vec’s similarity scoring

applications. [Ye+20]

Unfortunately, I was unable to replicate their results be-

cause they did not publish their models or the tool to produce

the context-aware semantic structures. [Ye+20]

Unfortunately, we are unable to replicate their results

because they did not publish their models nor the tool to

produce the context-aware semantic structures.

2.3 CodeSearchNet
Tomotivate researchers to further study the task of using nat-

ural language queries to produce code, Github and Microsoft

produced a corpus of 2 million functions and their respective

natural language descriptions (docstrings, comments). The

dataset is a collection of popular repositories in Javascript,

Java, Python, PHP, Ruby, and Go. For Javascript, they have

a total of 157,988 labeled data points. [Hus+19] I found this

dataset to be better than the method name embeddings in

Code2Vec because docstrings are more likely to include the

name of the website element that they are trying to render. In

addition, the dataset used in Code2Vec was not as accessible

as this one.

2.4 CodeXGlue
This paper, published by Microsoft researchers, is aimed

at fostering machine learning research for program under-

standing and generation. It includes 14 datasets, along with

documentation explaining how to use baseline models such

as BERT, GPT, and Encoder-Decoder to achieve a number of

different tasks like Clone Detection, Defect Detection, Code-

Completion, Code Summarization, and Text-Code Genera-

tion. They hope that researchers can fine-tune the models

and contribute to the advancement of the field of program

understanding by reporting their results. [Lu+21]

Understanding Javascript Code using Machine Learning Capstone Project 2, Fall 2021, Abu Dhabi, UAE

Since I aim to produce labels for snippets of code, I found

that their Code Summarization task, combinedwith the Code-

SearchNet dataset would be most relevant. Though they

don’t include the pre-trained model, they outline how to

train each individual transformer model using the provided

dataset.

2.5 CodeBERT
Since the Code Summarization task from CodeXGlue was

most successful with the CodeBERT model, I decided to

research this transformer model as well. CodeBERT is a bi-

modal pre-trained model for programming and natural lan-

guage (NL-PL). It was developed with a transformer-based

neural network, which has recently proven to be more ac-

curate than RNNs and LSTMs because it avoids recursion

and instead processes sentences as a whole by learning rela-

tionships between words through multi-head attention and

positional embeddings. [Fen+20]

3 METHODOLOGY
3.1 Dataset
The research uses threemain sources of data: CodeSearchNet,

Stack Overflow, and inline scripts from ten websites.

3.1.1 CodeSearchNet. This dataset was used by CodeXGlue

to train a model that uses CodeBERT as a baseline. Code-

SearchNet is a collection of datasets provided by Github and

Microsoft’s Deep Understanding Program. It consists of 2

million pairs (code, docstring) obtained from open source

repositories on Github.

3.1.2 Stack Overflow. Using the StackoverflowAPI, I fetched

Javascript questions with specific words in its title. I selected

the labels —menu, header, footer, social media, content, nav-

bar, navicon — because they had been previously used in

Computer Vision research for JSCleaner. The labels are com-

mon parts of a website that can help us understand what

parts of the code are doing what. Some of these, like "social

media", are usually non-critical to the user. Predicting what

part of a website a function of Javascript is responsible for

can help us predict if the function is critical or not. The al-

ternative of scraping all the Javascript questions from Stack

Overflow was explored, yet this would have taken months

due to the request limit of the site.

After requesting Stack Overflow to allow us to query us-

ing the maximum rate — 10,000 requests per day — I fetched

Javascript questions that had been answered and that had

one of the above-mentioned words in the title. Since the

Search API only returns the question_id, I used the Ques-
tion API to fetch the highest-voted answer. Finally, using

the question_id and the answer_id, I used BeautifulSoup

to scrape the URL and extract the code tags inside the div

containing the answer.

Though I requested Stack Overflow questions tagged as

Javascript, some of the answers included code in other lan-

guages. Thus, I used regex to filter out code written in other

languages. Then, I tokenized the Javascript functions using

the library Esprema and filtered functions that produced less

than 8 tokens. This resulted in 20,000 labeled data points.

The CodeXGlue Github instructs that in order to train the

CodeBERT model, the inputs must be put into a JSONL file

with the format:

repo : the owner / repo

path : the f u l l pa th to the o r i g i n a l f i l e

func_name : the f u n c t i o n or method name

o r i g i n a l _ s t r i n g : the raw s t r i n g b e f o r e

t o k e n i z a t i o n or p a r s i n g

language : the programming language

code / f u n c t i o n : the p a r t o f the

o r i g i n a l _ s t r i n g t h a t i s code

code_ tokens / f u n c t i o n _ t o k en s : t o k en i z e d

v e r s i o n o f code

d o c s t r i n g : the top − l e v e l comment or

do c s t r i n g , i f i t e x i s t s in the

o r i g i n a l s t r i n g

d o c s t r i n g _ t o k e n s : t o k en i z e d v e r s i o n o f

d o c s t r i n g

Since my dataset does not contain a repo or a path, these

fields were left empty. The fetched code was used in two

different datasets. The first one is made of code, sentence

pairs where the sentence specifies which of the labels is

present in the title. For example, "Returns footer" would be

a potential label to a function of code where the respective

Stack Overflow question is "How to make a footer in React?"

The second dataset uses the same snippet of code but paired

with the actual question fetched from Stackoverflow.

Example :

Da t a s e t 1 : [" d i s p l a yE l emen t (() =>

ge tE l ement () ;) " , " Re tu rns f o o t e r "]

Da t a s e t 2 : [" d i s p l a yE l emen t (() =>

ge tE l ement () ;) " , "How to make a

f o o t e r in Reac t ? "]

The labels exemplified above were placed in the func_name
and docstring fields in the input data.

3.1.3 Inline Scripts. I randomly selected 10 websites and

used a Selenium automated web browser to extract the con-

tent between each script tag. To avoid scripts belonging to

third-party libraries, I only extracted those without the src

attribute in the HTML of the index file. Then, I used a library

called Esprima to separate the code into individual functions

Capstone Project 2, Fall 2021, Abu Dhabi, UAE Maria

and used those as input in my models. The websites’ sepa-

rated scripts yielded 290 code snippets.

3.2 Training the Model
I trained two different models using the two sets of labeled

Stack Overflow data —one set with labels in the format "Re-

turns x" and another with the title of the Stack Overflow

question as the label. Using the inline scripts as input, I

wanted to compare the predictions of the CodeBERT model

trained on Github data (code, docstring pairs) with the model

trained with my Stack Overflow dataset. To compare the re-

sults of the two models with the CodeXGlue model, I created

three different testing datasets as shown in Table 1.

Model Data Example Prediction

CodeXGlue

Inline

Scripts

Returns lowest number

Stack Overflow

Label

Inline

Scripts

Returns menu

Stack Overflow

Title

Inline

Scripts

How can I create a menu

with React?

Table 1: The three different models were tested using
the inline script functions.

3.3 Rating the predictions
Each of the 290 functions was run through the 3 different

models, yielding 870 different predictions. To assess the ac-

curacy of the predictions and compare my models — "Stack

Overflow label" and "Stack Overflow question" — versus the

CodeXGluemodel, I recruited 12 participants and asked them

to rate the results on a scale of 1-5 (1 being "extremely inac-

curate" and 5 being "extremely accurate"). To recruit these

participants, I advertised the position to Junior and Senior

computer science students with knowledge of Javascript. I

then contacted those participants that met the criteria and

invited them to log into a web application.

To collect participants’ opinions on the predictions, I built

a Web application using a React frontend, NodeJS backend,

and Postgres database. The application used a login to au-

thenticate the user and ensured that different groups of users

accessed different questions.

Given the time constraints of the research and the stu-

dents’ time, I aimed to have each prediction reviewed by 3

people, which means that I had to separate the 870 predic-

tions into 4 groups. Thus, each student was assigned 217

labels to rate. Out of the 12 invited participants, 1 was not

eligible because they were not an NYUAD student and 3 did

not respond to the invitation. Unfortunately, out of the 9

students who responded, 1 responded to less than half of the

assigned questions and another one responded to only 7 of

the questions.

The lack of complete participation of the students led to

an average of only 2 responses to each prediction, leading us

to question whether the averaged scores for each response

were trustworthy or not.

4 RESULTS
The cumulative distribution of each model’s ratings can be

seen in Figure 1. The average ratings of each model can be

shown in Table 2. To my surprise, the CodeXGlue model av-

eraged only a rating of 3.05. Though my best model averaged

a rating of 1.8, it’s important to take into account how my

model had some serious disadvantages in terms of data: my

dataset was 10% the size of CodeXGlue’s; my code consisted

of imperfect and oftentimes incomplete functions that were

published on Stack Overflow, compared to the code-reviewed

functions published on Github; and my labels were questions

rather than descriptive docstrings.

Figure 1: Figure 1. CDF of ratings per model.

To identify potential differences between the two best

models, I compared the lengths of the labels. Perhaps, since

the Stack Overflow labels were question titles, they were

much wordier and casual than docstrings, which tend to be

straightforward. Thus, I started by calculating the average

length — measured as the number of words — of the labels in

both the CodeXGlue model and the Title model. I found that

the CodeXGlue model had labels with an average of 4 words,

whereas my model had an average of 9 words. To further

Understanding Javascript Code using Machine Learning Capstone Project 2, Fall 2021, Abu Dhabi, UAE

Model Average Rating

CodeXGlue 3.05

Stack Overflow Label 1.2

Stack Overflow Title 1.8

Table 2: On a scale of 1-5 (1 being the worst and 5 be-
ing the best), the CodeXGlue model averaged 3.05, fol-
lowed by the model trained on Stack Overflow ques-
tion titles with a score of 1.8.

study the statistical significance of this finding, I ran a linear

regression and found that there was a significant, negative

relationship between the length of the label and the score,

shown in Table 3.

Category Effect Size Significance

length_label -0.160441 0.0

Table 3: Linear regression yields a coefficient of -
0.160441 and a significance score of 0.0 for the relation-
ship between the length of label and rating.

An example of this issue is shown in Figure 2 where the

label predicted by CodeXGlue is much shorter and got rated

much higher, despite the fact it made little sense.

Figure 2: The table shows the ratings given to each of
the labels, two per each.

This example also brings tomy attention how theCodeXGlue
prediction does a better job at matching words found in the

function, regardless of whether they are needed to under-

stand the purpose of the code. This is due to the fact that

the Github model is composed of millions of functions, in-

creasing the number of available terms for the model to

use. Furthermore, the CodeXGlue dataset consisted of any

Javascript repository, meaning that the code could have been

written for a web service, a command-line program, desktop

software, or desktop widgets. On the other hand, my dataset

came from questions about web applications, further limiting

the corpus of available vocabulary.

From Figure 3, I can make various conclusions about the

different ratings given to each function. First, the abundance

of light blue in the CodeXGlue column, shows that even

though the average rating for the CodeXGlue model was

3, there were plenty of low ratings. Furthermore, there are

instances where the average rating for the Title model was

higher, indicating that a hybrid approach could maximize

the results.

Figure 3: The heatmap shows large white areas where
none of the models were able to perform accurately.
In addition, it shows instances where the Title model
outperformed the CodeXGlue model.

This indicates that there are clear limitations with both

models. While CodeXGlue can predict a wider variety of

words, the Title model may sometimes provide a better alter-

native. If I were to create a hybrid model using CodeXGlue
and Title, it would have an average rating of 3.2. Table 4

shows the improved averages and Figure 4 shows the new

heatmap.

Model Average Rating

CodeXGlue 3.05

Stack Overflow Label 1.2

Stack Overflow Title 1.8

Hybrid 3.2

Table 4: Hybrid model yields an average of 3.2.

Capstone Project 2, Fall 2021, Abu Dhabi, UAE Maria

Figure 4: Though there are still considerable white
spaces, the hybrid model provides an improved alter-
native.

4.1 Measuring similarity
Using previous research [Mil20], I compared the similari-

ties between two of my datasets: Stack Overflow and Inline

Scripts. Initially, I ran my Inline Scripts dataset through the

Labels model in the hopes that it could narrow down the

number of comparisons each script needed to run. (i.e the

Stack Overflow functions where the Label model predicted

"Returns header" vs the Inline scripts functions that where

the Label model predicted "Returns header). The results, how-

ever, could be grouped into one of the following: 1) Either

the similarity score was negligible (only about 20% of the

inline script matched the Stack Overflow function) 2) The

score was higher, but it was mainly due to the fact that

it would match extremely common lines of code, such as

for (int i = 0; i < n; i++).
Figure 5 shows the distribution of similarity scores be-

tween the 10 selectedwebsites and the StackOverflow scraped

functions.

The fact that the similarity scores did not produce signifi-

cant matches is largely due to two factors. First, the similarity

algorithm being used is based on syntactic similarities, rather

than semantic [Mil20]. This means that the algorithmwill not

catch instanceswhere small details were changed (i.e variable

names) but the code meaning remained the same. Secondly,

many of the functions were extracted from a minified file,

Figure 5: The heatmap shows some columns where
there is a consistent, dark blue present. This is because
these scripts were composed of generic functions, like
var i;

where most of the code was changed to make the website

load faster. Nevertheless, this invites further exploration of

this work. For instance, libraries can be used to unminify

the files. In addition, semantic comparisons, though harder

to achieve, could yield more meaningful results. Further-

more, perhaps the scripts from smaller, less popular websites

are more likely to have code copied from Stack Overflow,

given that more Junior developers would be responsible for

publishing them and they may have undergone fewer code

reviews and edits.

5 CHALLENGES
5.1 Javascript in the context of the web
One of the greatest challenges of labeling Javascript snippets

as website elements is that website elements don’t depend

solely on Javascript. They come to life thanks to HTML and

CSS, and are later given functionality with Javascript. Thus,

if the aim is to label website elements to determine whether

they are critical, training a model with Javascript can result

in a lot of useful information being left out, having an impact

on the accuracy of the model.

5.2 Javascript as a language
Another challenge of using Javascript is the use of anony-

mous and asynchronous functions, two of the most popu-

lar Javascript features. Including anonymous functions in

training data can interfere with a model’s ability to produce

Understanding Javascript Code using Machine Learning Capstone Project 2, Fall 2021, Abu Dhabi, UAE

similarly distributed vectors between functions, and asyn-

chronous functions can hinder the accuracy of syntactic

paths.

5.3 Website elements labeling challenges
Finally, in an attempt to increase the amount of training

data, I tried to find additional terms I could look for in the

question titles through the Search API. To do this, I crawled

a significant amount of Javascript questions —without their

answers, in order to prevent Stack Overflow from blocking

my calls. I removed stopwords, verbs, and other irrelevant

words from the new corpus of questions. However, when I

managed to identify the most common words in the ques-

tions, I only found names of frameworks, which could not

be used as labels.

5.4 Stack Overflow Data
One of the greatest challenges of this project was acquiring

and making sense of the dataset. First, Stack Overflow has

a rate limit of 10,000 requests per day when using the API,

and only about 200 if you are scraping directly from their

website (i.e BeautifulSoup). This meant that simply acquiring

my dataset of around 20,000 code snippets took over a month,

and attempting to scrape further questions was impossible

given the time constraints I was working under. On the other

hand, the Github dataset is composed of almost 8 times as

many code snippets and was curated by Github researchers

for years.

In addition, the data I managed to scrape was composed of

question titles (output) and the code tags under the highest-

voted accompanying answer (input). Thus, unlike the Github

dataset, the input code snippets were not always complete

functions, and the labels used to train were questions rather

than descriptive docstrings.

5.5 Data Collection
Due to time constraints, I was unable to test whether the

students rating the labels had sufficient Javascript knowl-

edge to understand the code snippets presented. In addition,

each student’s responses were not normalized to account for

those individuals who tend to rate things higher, or lower.

Given that each label only has 2 ratings, because of the diffi-

culties getting participants, making conclusive observations

is difficult (Figure 6 and 7).

6 DISCUSSION
In my research, I aimed to test current predictive models

with the goal of replicating their strengths and facilitating

the process of identifying non-critical elements in a website

before rendering. To do this, I trained the CodeBERT model

(what CodeXGlue used) using Stack Overflow’s highest-voted

Figure 6: The heatmap shows how some students did
not complete all the assigned questions, andhow some
tend to rate much higher than others. Though only 9
participants confirmed, 3 of them were willing to an-
swer double the questions. Though this helped us get
more ratings, it reduces the variety of interpretations,
increasing the impact of unnormalized responses.

answer code snippets and their respective questions. I then

used the inline script tags in ten website index files and

separated them into functions. I ran the functions through

the models and asked students to rate the predictions of each

model.

From my results, I made a number of observations. First,

the CodeXGlue model scored only an average rating of 3

out of 5, a surprisingly low result given the millions of code

snippets it was trained on. The low score could be attrib-

uted to the fact that the testing input was imperfect. Since

the testing data came from entire scripts separated using a

Javascript library, some of them were very short (only one

or two lines). The Github model, however, was trained using

Github functions, which were most likely complete.

This observation encourages a hybrid approach that would

benefit from the strengths of each model. Since my model

was trained on incomplete functions as well — Stack Over-

flow answers — it can offer an advantage when faced with

ambiguity. On the other hand, the CodeXGlue model offers a

wider variety of words, while keeping the labels more concise

Capstone Project 2, Fall 2021, Abu Dhabi, UAE Maria

Figure 7: The heatmap shows how each label was
only rated twice, and some of the ratings vary greatly.
Someone may rate a label with a 4.0, while another
person may give a 2.0.

and easy to understand, as shown in the negative correlation

between label length and rating. Furthermore, in the future,

when more research on semantic analysis of code has been

done, both similarity research and code understanding can be

re-explored. Through augmenting the CodeXGlue model, we

can contribute to some of the most groundbreaking research

in programming with natural language.

REFS
[Kar+17] David Kartchner et al. “Code2Vec: Embedding and Clustering

Medical Diagnosis Data”. In: 2017 IEEE International Conference
on Healthcare Informatics (ICHI). 2017, pp. 386–390. doi: 10.
1109/ICHI.2017.94.

[Hus+19] Hamel Husain et al. “CodeSearchNet Challenge: Evaluating

the State of Semantic Code Search”. In: CoRR abs/1909.09436

(2019). arXiv: 1909.09436. url: http://arxiv.org/abs/1909.09436.

[Fen+20] Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for

Programming and Natural Languages”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language
Processing: Findings, EMNLP 2020, Online Event, 16-20 November
2020. Ed. by Trevor Cohn, Yulan He, and Yang Liu. Association

for Computational Linguistics, 2020, pp. 1536–1547. doi: 10.

18653/v1/2020.findings-emnlp.139. url: https://doi.org/10.

18653/v1/2020.findings-emnlp.139.

[Mil20] Jahnae Miller. “An Empirical Comparison of Code Similarity

Algorithms”. In: NYUAD Capstone Project 2 Reports. 2020, p. 1.
[Ye+20] Fangke Ye et al. “MISIM: An End-to-End Neural Code Similarity

System”. In: vol. abs/2006.05265. 2020. arXiv: 2006.05265. url:

https://arxiv.org/abs/2006.05265.

[Lu+21] Shuai Lu et al. “CodeXGLUE: A Machine Learning Benchmark

Dataset for Code Understanding and Generation”. In: CoRR

abs/2102.04664 (2021). arXiv: 2102.04664. url: https://arxiv.

org/abs/2102.04664.

https://doi.org/10.1109/ICHI.2017.94
https://doi.org/10.1109/ICHI.2017.94
https://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2006.05265
https://arxiv.org/abs/2006.05265
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2102.04664

	Abstract
	1 Introduction
	1.1 Objectives

	2 Related Work
	2.1 Code2Vec
	2.2 Novel Code Similarity
	2.3 CodeSearchNet
	2.4 CodeXGlue
	2.5 CodeBERT

	3 Methodology
	3.1 Dataset
	3.2 Training the Model
	3.3 Rating the predictions

	4 Results
	4.1 Measuring similarity

	5 Challenges
	5.1 Javascript in the context of the web
	5.2 Javascript as a language
	5.3 Website elements labeling challenges
	5.4 Stack Overflow Data
	5.5 Data Collection

	6 Discussion

