Analysing Page Load Times by Optimising and
Separating Unique Functions in Internal Web pages

Aayush Aayron Deo
Computer Science, NYUAD
aad598@nyu.edu

Advised by: Yasir Zaki

ABSTRACT

JavaScript the language of the web, is very widespread. About
95% of websites running some JavaScript. Using a lot of
JavaScript can slow down the website due to large files be-
ing sent over the network, and the need to interpret lots of
lines of code. Some of the JavaScript maybe non-essential
to the functionality of the website, or may never be used
due to not being triggered by user actions and as such can
be removed, reducing the overall bundle size, and lines of
code to interpret resulting in an increase in load times and
performance. I present the analysis metrics of pages whose
JavaScript files were optimised through detection and elimi-
nation of deadcode using Muzeel and detect functions that
are extra in an internal compared to all the functions present
in the JavaScript of the homepage. Putting these extra func-
tion a file and referring to this file benefits performance if
the internal page does not reference any other JavaScript
resource that is not referenced by the homepage.

KEYWORDS

internal pages, optimisation, JavaScript, load times, deadcode,
extra functions, unique functions, functions

Reference Format:

Aayush Aayron Deo. 2022. Analysing Page Load Times by Opti-
mising and Separating Unique Functions in Internal Web pages. In
NYUAD Capstone Project 2 Reports, Spring 2022, Abu Dhabi, UAE.
5 pages.

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Wrbgaicljgigridcola
NYU ABU DHABI

Capstone Project 2, Spring 2022, Abu Dhabi, UAE
© 2022 New York University Abu Dhabi.

Homepage

Product Page 1

Product Page 2

Product Page 3
v

v
Product Detail Page Product Detail Page

Figure 1: A site map of a website that shows path to
internal pages

Product Detall Page

1 INTRODUCTION

JavaScript is the language of web and about 95% of websites
have some JavaScript included. This JavaScript code has
multiple purposes. For example, making network requests,
enabling animations, adding interactivity, checking authen-
tication, conditional rendering. While having JavaScript on
websites enhances the user experience, it comes with the cost
of having to transfer multiple and at times large JavaScript
files over the network and interpreting the code to make
it functional on the website. This may not be an issue on
many mid to higher tier mobiles devices; however, on lower
tier mobile devices with limited RAM and CPU power this
can significantly increase the time to interactivity of a web
page, this is all on top of the time it takes to download the
JavaScript files over a slow network.

Our aim is to detect, eliminate JavaScript dead code home
page and internal web pages using Muzeel and also to sep-
arate the detect the functions in the internal which is the
unique to the internal page when compared to the homepage.
An internal page is defined as any page of a website that can
be reachable by following a path, either directly or through
another page from the homepage of a website.

Capstone Project 2, Spring 2022, Abu Dhabi, UAE

By separating the extra functions a separate file and by
leveraging browser caching, we could gain improvements to
page load times. In this paper I discuss the methodology, the
analysis and testing techniques used, the results of the study
and works related to the paper.

2 METHODOLOGY

2.1 Hispar List

The Hispar[2] is a list published by weekly by Duke Univer-
sity that contains the list of top webpages as compared to the
top domains as published by other web ranking services like
the Alexa and Tranco lists, which only published the top do-
mains. The Hispar list is much more applicable to our study
as it list the internal pages of a site as well as the homepage
of the internal webpage. This is useful so that we can access
the homepage assets as well as the internal page assets. Not
only that but the Hispar list also ranks the pages based Alexa
ranking. We leveraged this by conducting the study on the
top 3 internal pages and its corresponding homepage.

We selected the pages such that when a page is accessed
using the url from the Hispar, it goes directly to the page
and does not redirect. This is important for Muzeel to work
correctly.

2.2 Scraping and Asset Caching

After the list of internal pages and its corresponding home-
pages were selected, these sites were scraping using the
MITM proxy which seeing all requests that page is making
and would intercept, downloading and cache these resources
for use with Muzeel later. During the scraping, MITM proxy
would see a request, intercept the request, log the relevant
and also download and store the requested resources on the
server to be served later.

2.3 Muzeel

Muzeel is a tool that was developed by Tofunmi as part of his
capstone to detect deadcode in JavaScript files. The Muzeel
was extended from Lacuna]S. Muzeel detects the deadcode by
the means of a directed graph. Muzeel would first go through
JavaScript files and adds a node for every function that is en-
counters in the JavaScript file. After this stage, starting from
the global scope, Muzeel would add a directed edge from
function A to function B where function A calls function B.
After this graph is made, Muzeel looks for nodes that have
an indegree of zero which means that the respective node
was not called by any other function. The only expection to
this rule is the global node where the execution starts. These
functions are declared as deadcode and the function body
for each of these functions are removed. Muzeel removes
function body as opposed to the functions declaration be-
cause there maybe instance where these functions are values

Aayush

function

Figure 2: Screenshot showing three types of functions
in JavaScript

to keys in a JavaScript object. If the interpreter does not
see this function, it would throw an error and would stop
executing. Removing the function body has the same effect
as not having the function itself.

2.4 Extra Functions

There are three type of JavaScript functions: function dec-
larations, function expression and arrow function as seen
in Figure 2. To detect extra unique functions for an internal
page, all the JavaScript files [which has been optimised by
the Muzeel in the previous] as parsed using Esprima. Es-
prima would list all the JavaScript components for the file.
We repeat the parsing for all JavaScript files that are used by
the homepage. After both sets of JavaScript files are parsed
by the Esprima, we extract the names of all functions that
are accessible from a global scope and keep track of them by
the type of page [internal page or homepage]. Using the list
all the function names, we compare the list of internal page
functions with the list of the homepage function and extract
the extra function in the internal page. Extra functions are
defined as those function which are present in the set of
internal page function but not present in set of homepage
functions.

After the extra functions are identified, these extra func-
tions are written in the form a function declaration and put in
a separate file. After this, HTML page of the internal page is
injected with the script tag that refers to the extra JavaScript
functions so that this resource can be extracted and served
by our proxy when running the tests.

Analysing Page Load Times by Optimising and Separating Unique Functions in Internal Web pages

3 ANALYSIS

We conducted two different types of analysis. The first was
we ran the web page test on three different scenarios. An-
other test we ran was to we compare the structural similarity
of the two pages using QLUE.

3.1 Webpage Test

Webpage test is a tool that we used to get the metric of the
webpages. We ran webpage tests for three different scenarios:

(1) Visiting original internal page

(2) Visiting internal page whose JavaScript has been opti-
mised by Muzeel and includes extra functions for that
page

(3) Visting landing page whose JavaScript has been opti-
mised by Muzeel then visiting the internal page whose
JavaScript has been optimised by Muzeel and includes
the extras function for that page

The above tests were five time for each of the 14 internal
pages using a proxy that would serve the requested resource
through our proxy instead of requesting it from the original
source. Due to the dynamic and the templated nature of
the most webpages today, webpages may change depending
on when it was requested. Given that all the pages were
scraped and all the resources for the page were available on
our server, we used a proxy to serve these resources. This
would ensure that the same resources will be served.

3.2 QLUE

QLUE is tool that uses tools such as skiimage to break up
the screenshots of two pages into smaller components and
would analyse then based on these components. QLUE would
output a score between 0 and 1 for a page of webpages. In our
test we ran QLUE for screenshot of the original page com-
pared to the screenshot of the internal pages who JavaScript
has been optimised based by Muzeel and includes the extra
functions for that internal site. The screenshots generated
were for the entire length of the webpage.

4 RESULTS

4.1 Webpage Test

The webpage test reported the metrics that relate to the load-
ing of the pages. As mentioned above the 3 testing scenarios
were repeated 5 times for each of the 14 internal page and
their corresponding homepages where possible. To normalise
the data from the 5 runs of a single test on a page, the data
point was sorted and the median value was taken for the test.
Three different combinations of the tests ran were analysed.
These tests were:

Capstone Project 2, Spring 2022, Abu Dhabi, UAE

100

| :
|

PLT Improvement [%]

5 Loaded Size Ianr-avement [%]

Figure 3: Box plot comparison A

(1) Comparison A - Metrics for visiting original landing
page vs the metrics for visiting internal page with
Muzeel optimised and extra JavaScript functions

(2) Comparison B - Metrics for visiting original landing
page vs the metrics for visiting the landing page with
Muzeel optimised and then visiting internal page with
Muzeel optimised and extra JavaScript functions

(3) Comparison C - Metrics for visiting internal page with
Muzeel optimised and extra JavaScript functions vs
the metrics for visiting the landing page with Muzeel
optimised and then visiting internal page with Muzeel
optimised and extra JavaScript functions

4.1.1 Comparison A. The purpose of this test was to deter-
mine if there were significant improvements in page load
times and size of JavaScript requested. This showed that
on average the internal page [optimised with Muzeel and
containing extra JavaScript functions] loaded 24.14% faster
compared to the original and there was on average a decrease
of the 50.4% bytes loaded when comparing the size of the
JavaScript file. This improvement came about due to the use
of the Muzeel which remove the JavaScript deadcode and
reduced size of the JavaScript file to be loaded.

4.1.2 Comparison B. The purpose of this test was to deter-
mine if there were significant improvements in page load
times and size of JavaScript requested. This showed that on
average the internal page [optimised with Muzeel and con-
taining extra JavaScript functions] visited after visiting the
landing page [with JavaScript optimised by Muzeel] loaded
20.12% faster compared to the original and there was on av-
erage a decrease of the 48.16% bytes loaded when comparing
the size of the JavaScript file. This improvement came about
due to the use of the Muzeel which remove the JavaScript
deadcode and reduced size of the JavaScript file to be loaded.

Capstone Project 2, Spring 2022, Abu Dhabi, UAE

100

| :
S

PLT Improvement [%:]

|5 Loaded Size Improvement [3%]

Figure 4: Box plot comparison B

4.1.3 Comparison C. Out of the 14 web pages that the test
was run on the only 5 web pages [internal page visited after
landing] loaded faster as compared to visiting the internal
page directly. These pages loaded on average about 23.02%
faster and saw a decrease of 8.84% bytes loaded. This improve-
ment came out due to the browser caching the resources that
it had already been downloaded. As for the other 9 internal
sites, the internal pages visited after landing loaded slower as
there were resource origin urls that the web browser had not
previous encountered as such the browser had to download
these resources which increased the load time.

42 QLUE

After running QLUE on 14 internal pages, QLUE returned
a score of 1 for the 11 out of the 14 pages. A score of 1
means that the original internal page [without modification]
and the modified internal page [whose JavaScript files had
been optimised by Muzeel and had extra functions] were
completely similar. Out of the 3 that were not accounted for
of the pages loaded with a blank screen and as such the test
failed for the page, while for the other two pages the test
was inconclusive.

5 RELATED WORKS

Research conducted by Sohaib et al[1] using mobile phone
statistics of about 0.5 millions smartphones from Pakistan,
revealed that 57.4% of mobile phones had CPU speeds in the
range of about 500-1000MHz whereas only 0.485% of phones
had more than 1GB of memory. Smart phones with such spec-
ifications have limited capability and would not be able run
large JavaScript files. Research by Usama et al[4] explored
the causes that contributed to the sub optimal performance
of web pages by longitudinal cross-analysis of resource pro-
files from a large social network in five regions. Usama et al

Aayush

proposed WebMedic an approach to JavaScript analysis and
optimisation that traded off less critical functionality of a
web page to directly address memory and performance prob-
lems. The paper reports that WebMedic can reduce JavaScript
memory by 80% while giving up only 20% of the functionality.
This would be helpful for lower end smartphones.

The paper by Neils et al[5] proposed Lacuna]s, a tool for
JavaScript deadcode elimination, that uses several methods
for the analysis of JavaScript code for dead code before re-
moval. Lacuna]S creates a graph of function call graph, then
using one of three analysis techniques [static, dynamic or
WALA-based extensions] analyzes, the function calls. In the
graph, each node is a function and during the analysis an
edge is added from the calling function to the called func-
tions. At the end of the analysis, dead code is identified as
nodes which have no inward edges, this means this func-
tion is not called by any other function and the function
body can be removed without any repercussions. Another
approach to the JavaScript optimisation involves the use of
the use of algorithms like genetic programming and genetic
improvement as outlined by Fabio et al[3].

The approach by Fabio et al, reported size reductions in
JavaScript bundles from 6% to 17% and a 40% reduction in
unused code. This approach could be used in conjuction with
LacunaJ$S outlined by Neils et al to potentially increase the
level of dead code elimination.

6 CONCLUSION

In conclusion, Muzeel on the JavaScript files of a webpage
can reduce the total size of the JavaScript to upto 50% while
reducing loads times by upto 24%. In terms of internal pages,
if both the home page and internal page references the same
amount of JavaScript resources, by leveraging caching [if
the landing page was visited before the internal page] load
times could be reduced by upto 23% and the amount of the
JavaScript loaded can be reduced by upto 8%. However, if it is
the same that the internal reference JavaScript resources that
were present in the homepage when the change in metrics
are not beneficial but rather can be more detrimental.

Having these improvement significantly improve access
to the internet in the places with slower internets as this
would mean that pages would load faster due to smaller files
being downloaded as well the JavaScript engine having to
parse smaller files.

REFERENCES

[1] Sohaib Ahmad, Abdul Lateef Haamid, Zafar Ayyub Qazi, Zhenyu
Zhou, Theophilus Benson, and Thsan Ayyub Qazi. 2016. A View
from the Other Side: Understanding Mobile Phone Characteristics
in the Developing World. In Proceedings of the 2016 Internet Mea-
surement Conference (Santa Monica, California, USA) (IMC ’16). As-
sociation for Computing Machinery, New York, NY, USA, 319-325.

Analysing Page Load Times by Optimising and Separating Unique Functions in Internal Web pages

[2

3

—

[t

https://doi.org/10.1145/2987443.2987470

Wagqar Ageel, Balakrishnan Chandrasekaran, Anja Feldmann, and
Bruce M. Maggs. 2020. On Landing and Internal Web Pages: The Strange
Case of Jekyll and Hyde in Web Performance Measurement. In Proceed-
ings of the ACM Internet Measurement Conference (Virtual Event, USA)
(IMC °20). Association for Computing Machinery, New York, NY, USA,
680-695. https://doi.org/10.1145/3419394.3423626

Fabio Farzat, Marcio Oliveira Barros, and Guilherme H. Travassos. 2019.
Evolving JavaScript code to reduce load time. IEEE Transactions on
Software Engineering (2019), 1-1. https://doi.org/10.1109/TSE.2019.
2928293

Capstone Project 2, Spring 2022, Abu Dhabi, UAE

[4] Usama Naseer, Theophilus A. Benson, and Ravi Netravali. 2021.

(5]

WebMedic: Disentangling the Memory-Functionality Tension for the
Next Billion Mobile Web Users. In Proceedings of the 22nd Interna-
tional Workshop on Mobile Computing Systems and Applications (Vir-
tual, United Kingdom) (HotMobile ’21). Association for Computing Ma-
chinery, New York, NY, USA, 71-77. https://doi.org/10.1145/3446382.
3448652

Niels Groot Obbink, Ivano Malavolta, Gian Luca Scoccia, and Patri-
cia Lago. 2018. An extensible approach for taming the challenges
of JavaScript dead code elimination. In 2018 IEEE 25th International
Conference on Software Analysis, Evolution and Reengineering (SANER).
291-401. https://doi.org/10.1109/SANER.2018.8330226

https://doi.org/10.1145/2987443.2987470
https://doi.org/10.1145/3419394.3423626
https://doi.org/10.1109/TSE.2019.2928293
https://doi.org/10.1109/TSE.2019.2928293
https://doi.org/10.1145/3446382.3448652
https://doi.org/10.1145/3446382.3448652
https://doi.org/10.1109/SANER.2018.8330226

	Abstract
	1 Introduction
	2 Methodology
	2.1 Hispar List
	2.2 Scraping and Asset Caching
	2.3 Muzeel
	2.4 Extra Functions

	3 Analysis
	3.1 Webpage Test
	3.2 QLUE

	4 Results
	4.1 Webpage Test
	4.2 QLUE

	5 Related Works
	6 Conclusion
	References

