
Iruka: Accelerated Mobile Pages Through Classifying
and Blocking Non-critical JavaScript

Patrick Inshuti Makuba
Computer Science, NYUAD
patrick.inshuti@nyu.edu

Advised by: Yasir Zaki, Moumena Chaqfeh

Reference Format:
Patrick Inshuti Makuba. 2021. Iruka: Accelerated Mobile Pages
ThroughClassifying and BlockingNon-critical JavaScript . InNYUAD
Capstone Seminar Reports, Spring 2021, Abu Dhabi, UAE. 9 pages.

ABSTRACT
The average page size has been increased from 1720 Kilo-
bytes In 2016 to 3077 Kilobytes in 2021[5], where Javascript
is increasingly contributing to the total page size (from 24%
in 2016 to 27% in 2021)[2]. In comparison to equivalent-sized
web resources, JavaScript is more expensive to process due
to the requirement of parsing, interpretation and execution.
This cost significantly contributes to the increasing com-
plexity of modern mobile pages, which becomes a critical
performance bottleneck for low-end smartphone devices and
ultimately leads to lesser user engagement.
Hence, in this paper I propose a tool which uses a ma-

chine learning algorithm to classify JavaScripts into differ-
ent categories from which are used as a basis point to non-
critical Javascript, with the aim of reducing the amount of
JavaScripts in a fully loaded web-page. The tool is a form
of browser plugin that is privacy-preserving, since it offers
an independent client-end solution that does not require
any external interaction with any third-party service. The
proposed plugin is empowered by a neural network model
which detects categories of JavaScript elements used in web
pages with an accuracy of 89.33%. Evaluation results show
that when the plugin is installed on a client’s browser, there
is a substantial improvement across different evaluation met-
rics used i.e on low-end mobile phones, there was a 31%

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Seminar, Spring 2021, Abu Dhabi, UAE
© 2021 New York University Abu Dhabi.

reduction in the Speed Index and a 32% reduction in the Page
Load Time among others.

1 INTRODUCTION
The web is increasingly becoming much more complex and
sophisticated and so is the users’ expectation towards the
quality of the browsing experience. This creates a dilemma
where more and more Javascript is used to provide more
complex features to entice users but at the same time leading
to an increased Page Load Time which ultimately reduces
users retention and engagement levels.

In 2018 a research carried out by Google found that when
the page load time (PLT) increases from 1 to 10 seconds, the
probability of a user leaving a website increases by 123%,
and in the same research it is shown that by average it takes
15 seconds to fully load landing page on a mobile device [1].
Hence, this fully conveys the idea of how important each
second is when it comes to page load time(s). Therefore any
increased Page Load Time can potentially present a much
larger problem than a just a "slowwebsite" to institutions that
rely on their online presence to carry out their businesses
due to the fact that in the same study, since the retention of
their clients is directly correlated to how fast their web-pages
load.
While it would be an incomplete analysis to directly at-

tribute a long page load time to one single event, as this
could either range from a user’s slow Internet connection to
server overload. Another study carried out at the University
of Washington[12], shows that computation time; which in-
cludes loading, interpreting and executing JavaScript makes
up 35% of the a critical path for a page load time and in
particular, due to the dependency policies given by the Web
Standards[3], synchronous JavaScript highly contributes to
the overall page load time as it blocks HTML parsing when
it is being processed, hence an increase JavaScripts requests
results into a higher page load time penalty.
Henceforth, the studies carried out on this topic have

sparked an increased interest in the research community to



Capstone Seminar, Spring 2021, Abu Dhabi, UAE Patrick Inshuti Makuba

create tools and methodologies to decrease the web com-
plexity and increase user retention through optimizing how
JavaScript is handled on the browser without compromising
the web page’s contents or functionality [7]. The plugin I
propose in this paper aims to specifically achieve this. In
addition the proposed plugin achieves this without compro-
mising users’ privacy as the machine learning model that
powers the plugin is entirely deployed on the client’s de-
vice. On low-end devices, the plugin achieve a reduction of
31% reduction in the Speed Index, 32% reduction in the Page
Load Time, 23% reduction in First Paint and 41% reduction in
DOM Interactive time. And on high-end devices, the plugin
performs similarly but slightly better numbers.

2 MOTIVATION
While there is a growing number of research being conducted
on the topic of reducing the Page Load Time and increasing
the quality of user interaction on the web by removing unnec-
essary web components that bloat the Page Load Time, there
are still untapped issues that are generally not addressed in
such research studies, such as Privacy issues, lack of suffi-
cient user control over the platforms and a lack of focus on
low-end devices which are the ones that highly benefit from
removing these unnecessary JavaScripts.

Henceforth this is themotivating factor for this paper, with
which I explain in details how these issues can be addressed
while simultaneously improving the existing mechanism to
decrease the Page Load Time. As an example the proposed
system, Iruka guarantees privacy to the user by employing a
novel system that uses a machine learning model that runs
100% from the client side, and therefore the client will never
need at any point to communicate with a third party service
to complete, as a result this fully insulates the client from
any possible network attacks or possible data leaks.
Additionally, the tool proposed in this paper focuses on

giving the end user the power to extensively configure how
the tool works, but on a more important note, with Iruka we
take into account that most users get the most of this feature
of removing unnecessary web components are those whose
electronic devices do not have enough capability to swiftly
process Javascript, hence the tool proposed in this paper is
tested and optimized for low-end devices.

3 RELATEDWORK
Recently, there has been an increased interest in the research
community to achieve a sustainable solution for simplifying
ever increasing complexity of web pages due to JavaScript.
Although with a certainly different approach and final aim.
For example, Silo[8] is a tools proposed by Microsoft Re-
search that aims to Exploit JavaScript and Document Object

Model (DOM) storage to reduce page load time. Silo addresses
a similar issue to this paper’s but in a different way.

Silo concatenates JavaScript files to form a smaller number
of JavaScript files, similarly to style sheets, different CSS files
are combined into a single CSS file. This is ultimately aimed
to reduce the number of HTTP requests required to render
a complete HTML file. Additionally in order to increase the
efficiency, the in-lined JavaScript and CSS are injected in the
HTML so that they become single file with HTML and hence
only require one HTTP request to be fully loaded. Though,
this seems efficient, after enough considerations we realized
a few implementation flaws for which it creates a segway to
propose our idea.
Silo chunks in-lined HTML files and stores them in the

DOM storage of the client, this makes it possible to only send
necessary chunks of the HTML file when a user loads another
similar page but with just a few different elements. In order
to achieve this, Silo extensively uses the DOM storage to
cache the concatenated HTML file. Such an implementation
becomes a storage burden to a normal end-user who surfs
around 80 different websites per month. Therefore given the
fact that our proposed tool is targeted to support users from
developing regions where storage is not as cheap. Silo does
not line up to the need.

In order for Silo to be used, the server delivering the pages
needs to be a silo enabled server. Therefore, this increases
the learning curve of developers, hence being discouraging
for the developers. Additionally this does not give the power
to end-users to choose for themselves which content to block
and with our tool, we intend to enable users to have a choice
in regards to what scripts to block.

Another related tool is JS Lite [4]. JS Lite is a tool developed
to optimize JavaScript and render an optimized version of
a page. The system is comprised of a web browser plugin
and a server. The browser plugin intervenes before a request
for a JavaScript script is made and then sends the script
to the server to be analyzed and labelled. The server runs
a machine learning algorithm proposed in JS Lite in order
to label scripts and place them in different categories, then
sends back to the plugin the labelled scripts.

4 SYSTEM OVERVIEW
Whenever a request is about to be made, the system inter-
cepts this with an onBeforeRequest event listener, the system
checks if the request about to be made is for a JS script. If
the request is for a JS Script, this will mark the beginning of
a sequence of decisions initiated by the system to determine
whether the request for the JS script is to be blocked or not.

The initial phase of the sequence involves checkingwhether
the client’s local database indexedDB holds a label for that
particular JS script that is about to be loaded via the request.



Iruka: Accelerated Mobile Pages Through Classifying and Blocking Non-critical JavaScript Capstone Seminar, Spring 2021, Abu Dhabi, UAE

In case the JS script’s label is found to be stored in the local
database, the system then decides whether to block or not
block the request according the "blocking configurations"
provided (which can be customized by the user).

Otherwise if the JS script’s label is not found in the client’s
local database indexedDB, the request will not be blocked.
In order to classify or label the JS script whose label was
not found in the client’s local database, the system uses the
onCompleted event listener which is fired when an entire
request for a script is complete, and then uses web-workers
to label and save the JS script’s label in the client’s local
database. This phase involves three crucial phases namely;

(i) Feature Extraction&Replication: In this phase, the
system extracts and counts specific features from an
incoming JS Script (in format the ML model under-
stands)

(ii) Script labelling: During this phase, the system uses
a Machine Learning algorithm to classify the script
into one of 8 distinct labels according to the features
extracted.

(iii) Storing: During this phase, the computed label of
a particular script is saved into the local database
indexedDB so that on subsequent page visits, the JS
script’s label is instantly retrieved instead of going
through phase (i) to (ii) all over again.

Figure 1: Architecture Design

5 DESIGN AND IMPLEMENTATION
This section discuses the implementation phases and design
decisions of the plugin. There are two crucial implementa-
tion milestones with which the plugin is made with. (1) The
Machine Learning Algorithm, (2) The Plugin

5.1 The ML Algorithm
The machine algorithm is one of the main core part of the
plugin workflow, as it enables a server-less method of de-
termining a script’s category/label . In short, the machine
learning’s purpose is to efficiently analyze a JS script and
classify it into the following categories seven categories; (1)
ads+marketing, (2) tag-manager+content, (3) hosting+cdn,
(4) video, (5) utility, (6) analytics, (7) social, (8) customer-
success.

5.1.1 Training and Testing dataset. The dataset used to
train and test the ML algorithm uses the Almanac dataset
which contains more than 100,000 scripts from different web-
sites. In the Almanac dataset, each record represents an indi-
vidual script. Each record has 5000 columns which represent
features that a particular script has, among the 5000 columns
one would be a category column which would contain one
of the 8 categories specified above. Beyond the category
column, an example of other columns would be addEventLis-
tener or onkeyup and under this column it would have 1 or
0 which represents whether that record has this "feature"
or not respectively. For the purpose of faster data accessibil-
ity and processing, the proposed tool Iruka uses a reduced
version of the original Almanac dataset which has been im-
plemented in the JSLite paper[4]. In order to generate the
reduced dataset, multiple columns are combined into one
according to function-wise similarity and odds of common
occurrence. Using this dataset allows us to cut down the
number of required columns by almost 90% - from 5000 to
508 columns of features.

5.1.2 MLDesign& ImplementationPhase. Themachine
Learning learning model is a three-layered Tensorflow Se-
quential model. Each layer is designed to reflect the dataset
we have and need to process.

Layer 1 is designed to have an input_shape of 508 which
reflects the number of columns i.e features from the reduced
version of the original Almanac dataset that was cited above.
The inputs configuration of the layer, which determines the
output shape of the layer is set at 350 units, this allows for a
decent but yet not steep-enough feature processing which
could lead to loss of data granularity. Furthermore, to ensure
fast computation we use the default activation function used
when developing many multi-layered models - the rectified
linear activation function or in short ReLU.

Additionally, using ReLU enables us to avoid the The van-
ishing gradient problem which occurs during the training
phase of a model where the neural network’s weights be-
come stagnant and hence not change their values through-
out multiple training sessions. This is due to the fact that the
gradient increasingly becomes smaller due to the nature how



Capstone Seminar, Spring 2021, Abu Dhabi, UAE Patrick Inshuti Makuba

the neural network’s weights receive updates that are pro-
portional to the partial derivative of the activation function
in use. Henceforth this problem can be avoided by using a
suitable activation function and in our case we use the ReLU
function.

Layer 2 uses the ReLU activation function as well, similar
to the first layer, but then has a configuration of 50 units
which is a reflection of the output_shape to be expected as
input from the third layer. Even though the goal of the model
is to have an output of 8 units which is the number of script
categories to predict, It is essential that we do not directly
move from 305 units to 8 units, as it degrades the training
quality and results in poor performance, hence why we have
an intermediate phase which outputs 50 units instead 8 in
order to not have a steep loss of granularity.
Layer 3 which is the final layer of the model, is designed

to have 8 units which reflects the output shape of the whole
model, and this reflects the expected 8 labels/categories men-
tioned above. Since the model is trying to solve a multi-class
(8 classes) classification problem and in addition we are inter-
ested in getting a probabilistic representation how each class
is classified, the most suitable activation is Softmax, hence
for this final layer I use the Softmax activation function.

The model is then compiled using Adam as the optimiza-
tion algorithm and sparse_categorical_crossentropy function
as the loss function. Finally the model is then trained over
30 epochs with a validation split of 25 percent.

5.2 The Plugin
As mentioned in the over-view section, the plugin’s purpose
is to block incoming Javascript requests according to the
blocking configurations that provideswhich categories/labels
to block, and with the help of the Machine Learning model
we are able to determine with a certain accuracy which cate-
gory each script belongs to. In order to achieve this, there
are phases that are implemented and are detailed below.

5.2.1 Preprocessing Phase: The ML model described in
the subsection(s) above is by design not executable within a
mobile browser environment, therefore in order to integrate
the model within our plugin, we opted into converting the
model to Tensorflow-JS model, which creates a version of
the original model that can be run and executed inside a
browser’s environment. To achieve this we use a Tensorflow-
JS in-built function converters.save_keras_model which car-
ries out the conversion of the model from a Tensorflow to
Tensorflow-JS format

5.2.2 Feature Extraction & Blocking Phase: In this sub-
section is where the script blocking logic implementation
is explained. In order for the plugin to determine whether
to block or allow an incoming Javascript request, the plugin

needs to label the incoming JS script, and in order to do so,
we have to first extract the content of the script and count
how many features (among the 508 features) that are inside
the JS script.
This allows us to create a data structure of features with

which the ML model can use to predict the JS script’s cat-
egory. In regards to blocking an incoming JS scripts, the
plugin sets a onBeforeRequest event listener which allows
the plugin to analyze all incoming request. Whenever an
incoming request is for a JS script, the plugin checks for 2
conditions to determine if the script gets blocked or not;

condition1 = script_category stored in local_db
condition2 = blocking_config has script_category

if (condition1):
if (condition2):

initiate(block script)

else:
initiate(warm-up phase)
initiate(do not block script)

Noticeably, from the pseudo-code above it is understand-
able that upon the initial contact with a JavaScript the client’s
local database will not possess that JavaScript’s labelled cat-
egory, hence making it impossible for the plugin to block
scripts on the initial page visits. There is an option to run the
ML model up on the initial page visit and henceforth avoid-
ing the warm-up phase altogether, but unfortunately this
option gives us a large overhead in terms of the performance
during the initial visits.

On the other hand, with the warm-up phase implemented,
the plugin is able to avoid such an overhead by not carrying
out the blocking on first-page but on all other subsequent
page visits. This is a trade-off between the user’s overall
experience and the ability to block JS scripts regardless of
which page visit.

Warm-up&Labelling Phase: During thewarm-up phase
it is where the ML model is deployed, then used to analyze
and classify the JS scripts. As discussed above, the warm-
up phase is a one-time process per each JS Script which is
initiated on the first contact with a JS Script.

To avoid performance lags, when processing each JS script
we instantiate a newwebworker whichwill then be executed
from a separate thread from the main execution thread of the
web-page[9]. This allows us not to block or slow down the
main thread which could have otherwise lead to an increased
page Load Time.



Iruka: Accelerated Mobile Pages Through Classifying and Blocking Non-critical JavaScript Capstone Seminar, Spring 2021, Abu Dhabi, UAE

Inside the web-workers is where the machine learning
model is loaded, and then the JS script is extracted for fea-
tures, and labelled into a category. After themachine learning
model predicts the category for the JS script, if the accuracy
of the prediction is below 80% then the script is labelled
as an "unknown" category, hence this guarantees us that
whenever we are blocking a JS script, we are 80% assured
that we are blocking a script that belongs to the category
we want to block. Afterwards, the JS script is saved against
its category in the client’s local database indexedDB, after
which the web-worker is terminated.

6 EVALUATION
6.1 ML Model Evaluation
As described above the implementedmachine learningmodel
is trained for 30 epochs over 100,000 scripts with which 75%
are used as the training set and the rest 25% are used as the
test set. After training the model over 30 epochs, the final
results are; an accuracy of 0.8933 and a loss of 0.3188.

The MLmodel’s performance and efficiency can be broken
down by each category, as it can be observed from the figure
below that for the category of ads+marketing the ML model
does considerably better at 97% than it does when it comes
to categorizing customer-success scripts at 65%.

Figure 2: Breakdown ofMLmodel performance by cat-
egory

This performance discrepancy between the ads+marketing
scripts and customer-success scripts is largely due to the im-
balance between the two script categories in the training
dataset used. Henceforth since the algorithm has more exam-
ples of ads+marketing scripts to learn from, this manifests
into the results as well.

6.2 The Plugin Evaluation
The Evaluation of the plugin was carried out with an aim of
understanding the overall impact of the system on various
performance determinants being (1) First Paint, (2) Page Load
Time, (3) DomInteractiveTime, (4) Speed Index.

The evaluation is done over two different mobile devices.
A low-end and high-end device. The low-end device is a
Xiaomi Redmi Go with a RAM of 1GB, storage of 16GB, has
a Qualcomm® Snapdragon™ 425 Processor and the GPU is
Adreno™ 308, up to 500MHz, and has a battery of 3000mAh
andWifi 802.11 b/g/n. Whereas, the high-end device is a Sam-
sung Galaxy A8 with a 4GB RAM, with a storage of 32GB,
and has an Exynos 7885 chipset with an Octa-Core, 2 proces-
sors: 2.2Ghz Dual-Core ARM Cortex-A73 as the processor,
and ARM Mali-G71 MP2 as the GPU. The high-end mobile
device has a fast charging 18W Li-Ion 3000 mAh battery and
WiFi 802.11 a/b/g/n/ac.

For testing purposes, on each device the plugin is config-
ured to block only three categories of scripts; Ads+marketing,
Analytic and Social scripts. Each mobile device is tested on
500 websites. The first 250 websites come from the Hispar list
of websites. Hispar is a list of a top web pages which takes a
step further than famous Alexa Top 1 Million as it give URLs
of internal pages instead of just the home page [11]. The
next 250 websites come from the Tranco list. The Tranco list
eliminates the issue that the majority of top web-pages lists
i.e Alexa face which is the easy manipulation of such lists
by malicious actors [10].
In the diagrams below, the blue dotted line represents

the base line testing when the plugin is not installed on the
mobile devices, the red line represents the first visit to a
web-page when the plugin is installed, and the green dotted
line represents the second web-page visit when the plugin is
installed. It is important to note that in this experiment all
caches were disabled so that the results are a clear indication
of how they plugin performs without any interference.

6.2.1 First Paint. First Paint refers to the time between
navigation to a certain URL and when the browser renders
the first pixels to the screen. The high-end device recorded
an average of 2.707 secondswhen the plugin was not installed.
When the plugin was installed the high-end device recorded
an average of 3.526 seconds on first visits and on the second
visits it recorded 1.951 seconds.

The results explained above means that on all subsequent
visits to theseweb-pages, Iruka awill enable an user equipped
with a mid to high-end mobile device to save 28% of their
time spent waiting for the browser to render the first pixel.
Here is a diagram illustrating the explanation above.



Capstone Seminar, Spring 2021, Abu Dhabi, UAE Patrick Inshuti Makuba

Figure 3: High-end Mobile Device, First Paint

While, the low-end device recorded an average of 3.058
secondswhen the plugin was not installed. And when the plu-
gin was installed was installed the low-end device recorded
an average of 4.267 seconds on first visits and on the second
visits it recorded 2.348 seconds. Below is an illustration of the
explanation above.

Figure 4: Hispar Low-end Mobile Device, First Paint

The results explained above means that on all subsequent
visits to these web-pages, Iruka will enable an user equipped
with a low-end mobile device to save around 23% of their
time spent waiting for the browser to render the first pixel.

Average Performance Comparison (Seconds)
No-
Extension

Initial
visit

Second
visit

First Paint (High-end) 2.707 3.526 1.951
First Paint (Low-end) 3.058 4.267 2.348

6.2.2 PageLoadTime (PLT). The high-end device recorded
an average of 10.699 seconds when the plugin was not in-
stalled. When the plugin was installed the high-end device
recorded an average of 22.635 seconds on first visits, this is of
course a one time penalty as on the second and subsequent
visits it recorded 6.666 seconds which is 38% decrease in the
page load time for all subsequent page visits on a high-end
mobile device.

Figure 5: High-end Mobile Device, Page Load Time

On the other hand, the low-end device recorded an average
of 14.252 seconds when the plugin was not installed. And
when the plugin was installed, the low-end device recorded
an average of 26.513 seconds on first visits and on the second
visits it recorded 9.752 seconds.

Figure 6: Low-end Mobile Device, Page Load Time

The results explained above means that on all subsequent
visits to these web-pages, Iruka will enable an user equipped



Iruka: Accelerated Mobile Pages Through Classifying and Blocking Non-critical JavaScript Capstone Seminar, Spring 2021, Abu Dhabi, UAE

with a low-end mobile device to receive an improvement
of 32% of the Page Load Time.

Average Performance Comparison (Seconds)
No-
Extension

Initial
visit

Second
visit

PLT (High-end) 10.699 22.635 6.666
PLT (Low-end) 14.252 26.513 9.752

6.2.3 Speed Index. Speed Index (SI) is an essential per-
formance metric that enables us to understand how fast a
web-page is populated. The high-end device recorded an
average of 1.181 seconds when the plugin was not installed.
When the plugin was installed the high-end device recorded
an average of 1.487 seconds on first visits, and on the second
visits it recorded 0.784 seconds which is 34% improvement
for all subsequent page visits.

Figure 7: High-end Mobile Device, Speed Index

On the other hand, the low-end device recorded an average
of 1.101 secondswhen the plugin was not installed. And when
the plugin was installed was installed the low-end device
recorded an average of 1.429 seconds on first visits and on
the second visits it recorded 0.759 seconds

Figure 8: Low-end Mobile Device, Speed Index

The results explained above means that on all subsequent
visits to these web-pages, Iruka will enable an user equipped
with a low-end mobile device to receive an improvement
of 31% of the speed Index.

Average Performance Comparison (Seconds)
No-
Extension

Initial
visit

Second
visit

SI (High-end) 1.181 1.487 0.784
SI (Low-end) 1.101 1.429 0.759

6.2.4 DOM Interactive Time. Similar to First Paint, DOM
Interactive Time (DIT) is a performance metric that under-
stand the website speed from user’s perspective. DOM Inter-
active Time measures the time from when the user navigates
to a URL until the page is ready for the user to interact[6].
It is important to note that in order for this event to be trig-
gered the web-page does not have to be fully loaded, but
should be in a state where a user can interact with it.

The high-end device recorded an average of 3.656 seconds
when the plugin was not installed. When the plugin was
installed the high-end device recorded an average of 4.250
seconds on first visits, and on the second visits it recorded
2.091 seconds which is 43% improvement for all subsequent
page visits.



Capstone Seminar, Spring 2021, Abu Dhabi, UAE Patrick Inshuti Makuba

Figure 9: High-end Mobile Device, DOM Interactive
Time

On the other hand, the low-end device recorded an average
of 5.008 secondswhen the plugin was not installed. And when
the plugin was installed was installed the low-end device
recorded an average of 6.874 seconds on first visits and on
the second visits it recorded 2.938 seconds

Figure 10: Low-end Mobile Device, DOM Interactive
Time

The results explained above means that on all subsequent
visits to these web-pages, Iruka will enable an user equipped
with a low-end mobile device to receive an improvement of
41% of the DOM Interactive Time.

Average Performance Comparison (Seconds)
No-
Extension

Initial
visit

Second
visit

DIT (High-end) 3.656 4.250 2.091
DIT (Low-end) 5.008 6.874 2.938

7 CONCLUSION
Taking into consideration the results of the experiment above
to determine the impact of Iruka on accessibility of a web-
page, It is in fact easily observable that on each performance
metric Iruka provides a substantial increase in the overall
performance regardless of the user’s mobile device.
Let us take an example of the Page Load Time, a perfor-

mance increase of 32% on a low-end mobile phone means
that with the help of Iruka, we are cutting down the Page
Load Time by 4.5 seconds from 14.252 seconds to 9.752 sec-
onds. If a user visits 100 web-pages (not websites) per day
then this will translate to about 225 minutes saved per month
or about 45 hours every year.
Furthermore, Iruka has an immense impact especially in

regions with expensive or slow internet connections, where
even 1 Kilobyte eliminated on each web-page that a user
visits might potentially save a user a lot of money or a sub-
stantial amount of time, while simultaneously respecting
their privacy.

REFERENCES
[1] Daniel An. 2018. Find Out How You Stack Up to New

Industry Benchmarks for Mobile Page Speed. https:
//www.thinkwithgoogle.com/marketing-strategies/app-and-
mobile/mobile-page-speed-new-industry-benchmarks/

[2] Http Archive. 2016. Average mobile webpage is now 2.2MB, 68% is
images: let’s trim the fat. https://mobile.httparchive.org/interesting.
php?a=All&l=Apr%201%202016.

[3] World Wide Web Consortium. 2021. STANDARDS. https://www.w3.
org/standards/.

[4] Dr. Moumena Chaqfeh Dr. Yasir Zaki. 2020. JSLite: An ML-driven
Browser Plugin For Lightweight Mobile Pages. (2020). unpublished.

[5] Andy Favell. 2017. Average mobile webpage is now 2.2MB, 68% is
images: let’s trim the fat. https://www.clickz.com/average-mobile-
webpage-is-now-2-2mb-67-is-images-lets-trim-the-fat/109268/. Ac-
cessed: 2021-04-2.

[6] UTKARSHGOEL. 2017. Beware of PerformanceTiming.domInteractive.
https://developer.akamai.com/blog/2017/12/04/beware-
performancetimingdominteractive.

[7] Utkarsh Goel and Moritz Steiner. 2020. System to Identify and Elide
Superfluous JavaScript Code for Faster Webpage Loads. arXiv preprint
arXiv:2003.07396 (2020).

[8] James Mickens. 2010. Silo: Exploiting JavaScript and DOM Storage
for Faster Page Loads. In Proceedings of the 2010 USENIX Conference
on Web Application Development (Boston, MA) (WebApps’10). USENIX
Association, USA, 9.

[9] Mozilla. 2021. Web Workers API. https://developer.mozilla.org/en-
US/docs/Web/API/Web_Workers_API.

[10] Tranco. 2021. Tranco Top Pages. https://tranco-list.eu/.
[11] Duke University. 2021. Hispar Top Pages. https://hispar.cs.duke.edu/.

https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://www.thinkwithgoogle.com/marketing-strategies/app-and-mobile/mobile-page-speed-new-industry-benchmarks/
https://mobile.httparchive.org/interesting.php?a=All&l=Apr%201%202016
https://mobile.httparchive.org/interesting.php?a=All&l=Apr%201%202016
https://www.w3.org/standards/
https://www.w3.org/standards/
https://www.clickz.com/average-mobile-webpage-is-now-2-2mb-67-is-images-lets-trim-the-fat/109268/
https://www.clickz.com/average-mobile-webpage-is-now-2-2mb-67-is-images-lets-trim-the-fat/109268/
https://developer.akamai.com/blog/2017/12/04/beware-performancetimingdominteractive
https://developer.akamai.com/blog/2017/12/04/beware-performancetimingdominteractive
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API
https://tranco-list.eu/
https://hispar.cs.duke.edu/


Iruka: Accelerated Mobile Pages Through Classifying and Blocking Non-critical JavaScript Capstone Seminar, Spring 2021, Abu Dhabi, UAE

[12] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. 2013. Demystifying page load performance

with WProf. In Presented as part of the 10th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 13). 473–485.


	1 Introduction
	2 Motivation
	3 Related Work
	4 System Overview
	5 Design and Implementation
	5.1 The ML Algorithm
	5.2 The Plugin

	6 Evaluation
	6.1 ML Model Evaluation
	6.2 The Plugin Evaluation

	7 Conclusion
	References

