
Evaluating the Efficacy of Next.js: A Comparative
Analysis with React.js on Performance, SEO, and

Global Network Equity
Swostik Pati

Computer Science, NYUAD
swostik.pati@nyu.edu

Advised by: Yasir Zaki

ABSTRACT
This paper investigates the efficacy of Next.js as a framework
addressing the challenges posed by React.js, particularly in
performance, SEO, and equitable web accessibility. By con-
structing identical websites and web applications in both
frameworks, we aim to evaluate the frameworks’ behavior
under diverse network conditions and capabilities. Beyond
quantitative metrics like First Contentful Paint (FCP) and
Time to Interactive (TTI), we incorporate qualitative user
feedback to assess real-world usability. Our motivation stems
from bridging the digital divide exacerbated by client-side
rendering (CSR) frameworks and validating investments in
modern technologies for businesses and institutions. Em-
ploying a novel LLM-assisted migration workflow, this paper
also demonstrates the ease with which developers can tran-
sition from React.js to Next.js. Our results highlight Next.js’s
promise of better overall performance, without any degrada-
tion in user interaction experience, showcasing its potential
to mitigate disparities in web accessibility and foster global
network equity, thus highlighting Next.js as a compelling
framework for the future of an inclusive web.

KEYWORDS
Next.js, React.js, Performance Evaluation, Search Engine Op-
timization (SEO), Global Network Equity, Client-Side Ren-
dering (CSR), Server-Side Rendering (SSR), Web Frameworks,
Digital Divide, User Experience

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Project 1, Fall 2024, Abu Dhabi, UAE
© 2024 New York University Abu Dhabi.

Reference Format:
Swostik Pati. 2024. Evaluating the Efficacy of Next.js: A Compara-
tive Analysis with React.js on Performance, SEO, and Global Net-
work Equity. In NYUAD Capstone Project 1 Reports, Fall 2024, Abu
Dhabi, UAE. 6 pages.

1 INTRODUCTION
In the dynamic realm of web development, the transition
from traditional server-side rendering (SSR) to client-side
rendering (CSR) has marked a significant evolution in how
web applications are designed and interacted with. SSR op-
erates by having the webpage’s content be first generated
on the server and then sent over the network to the user’s
browser in its final HTML form. This method, while sta-
ble and reliable, often results in slower response times to
user interaction, as each request necessitates a new page to
be served from the server. To counter this, CSR was intro-
duced as a more modern approach that shifted the rendering
operations to the browser. Web applications download a min-
imal HTML page from the server, which then uses loads of
JavaScript files to generate the rest of the page’s content dy-
namically. This shift not only reduces the server load but also
significantly enhances the interactivity and fluidity of user
interfaces. Web apps became more responsive, providing a
smoother user experience as the browser could re-render
only specific parts of the page in response to user actions
without needing to fetch a new page from the server each
time.

However, as the landscape evolved, it became evident that
CSR, despite its improvements in reactivity and user interface
fluidity, has introduced significant challenges. These include
suboptimal search engine optimization (SEO), poorer perfor-
mance [12], and an increased demand on the client resources.
As such, it led on to a disparate web experience across var-
ied network conditions, highlighting a digital divide that
is more pronounced in low-bandwidth environments. One

Capstone Project 1, Fall 2024, Abu Dhabi, UAE Pati

major example of this is the case of React.js [21], which exem-
plifies both the strengths and weaknesses of CSR. React.js is
a client-side JavaScript framework that was widely adopted
around the world ever since its launch and is currently the
second most used web framework with almost 40% market
share [19]. However, even with such wide adoption rates,
frequent updates, and several workarounds and optimiza-
tions, React.js still suffers from all the aforementioned issues
and challenges of CSR.
All of the above has led to an increased interest in what

are known as hybrid frameworks, such as Next.js [23] (a JS
framework built over React), which mitigates these issues by
combining the best features of SSR and CSR. Next.js promises
to enhance SEO and performance through techniques like
pre-fetching, incremental static regeneration, and static site
generation. In addition, through its default caching mecha-
nisms and use of server components (which would reduce
the client-side overhead), it effectively optimizes resource
utilization, ensuring that users worldwide, regardless of their
network, receive a faster and more seamless web experience.

Due to the benefits of Next.js, the web development world
has been fast to adopt this framework, with Next.js having
become the 4th most used web framework globally (i.e., 18%
market share [19]) in less than ten years since its inception.
Given the widespread migration towards Next.js, this study
seeks to preemptively address potential pitfalls by evaluating
Next.js and benchmarking its performance against its parent
library, React.js, across various performance metrics (i.e.,
loading times, lighthouse scores), network conditions, and
device processing capabilities. By doing so, we set out to
understand whether Next.js can truly live up to its promises.
In this paper we plan to answer the following research

questions: RQ1 Does Next.js have an overall faster perfor-
mance compared to React.js across different network con-
ditions and device specifications? RQ2 Does Next.js have
better Search Engine Optimization (SEO) metrics than Re-
act.js?RQ3Beyond the quantitative evaluations, does Next.js
match—if not exceed—React.js in terms of user interaction
experience?

2 RELATEDWORK
Limited research has been conducted specifically comparing
Next.js and React.js in terms of performance, SEO, and global
network equity. However, some relevant studies have exam-
ined aspects of server-side rendering (SSR) and client-side
rendering (CSR) that provide useful context for our work.

2.1 Comparison of SSR and CSR
Iskandar et al. conducted a study comparing server-side and
client-side rendering for web applications [12]. Their re-
search focused on performance metrics such as First Content-
ful Paint, Speed Index, Time to Interactive, First Meaningful

Paint, First Idle CPU, and Estimated Input Latency. The re-
sults showed that SSR outperformed CSR acrossmostmetrics,
with improvements ranging from 60% to 123%. Specifically:

• First Contentful Paint was 2.1s for SSR vs 3.1s for CSR
• Speed Index was 2.0s for SSR vs 3.2s for CSR
• Time to Interactive was 2.2s for SSR vs 4.9s for CSR

The authors also found that SSR provided better Search En-
gine Optimization (SEO) results, while CSR offered improved
accessibility. This aligns with our focus on examining SEO
performance differences between Next.js and React.js.

2.2 Rendering Performance Analysis
Nordström and Dixelius performed an analysis of server-
side and client-side rendering techniques for web pages with
varying levels of complexity [17]. Their study utilized per-
formance testing tools like Google Lighthouse and Chrome
DevTools to measure metrics including First Contentful Paint
(FCP) and Largest Contentful Paint (LCP).

Key findings from their work relevant to our research
include:

• For simple web pages with few elements, the choice
of rendering method had minimal impact on loading
speed.

• As page complexity increased with more content, API
calls, or media, SSR demonstrated better rendering
performance.

• Network conditions significantly affected the perfor-
mance gap between SSR and CSR, with SSR showing
larger advantages under constrained bandwidth.

These results provide a useful foundation for our more
focused comparison of Next.js and React.js across various
network conditions and page complexities.

It’s worth noting that comprehensive studies directly com-
paring Next.js and React.js performance in the context of
global network equity are relatively scarce. This highlights
the need for our research to fill an important gap in un-
derstanding how these popular frameworks perform across
diverse network environments.

3 MOTIVATION
Themotivation behind this work is twofold: ensuring that the
world as a whole gets to experience the web in a similar way,
bridging the digital divide that is currently present due to
disparities across network bandwidths and device processing
capabilities [5]; and ensuring that when content providers
migrate into newer web technologies such as Next.js, they
are actually worth the investment.

Evaluating Next.js: A Comparative Analysis with React.js Capstone Project 1, Fall 2024, Abu Dhabi, UAE

3.1 Towards Global Network equity
The enhanced interactivity offered by CSR frameworks like
React.js in regions with robust network connectivity can
result in significantly longer loading times in areas with
limited bandwidth [12, 17]. This disparity in performance
can disproportionately affect users in regions with poor net-
work infrastructure. This discrepancy arises because CSR
frameworks transfer the entirety of the webpage data to the
client side for processing [4, 12], necessitating users in low-
bandwidth environments to download substantial amounts
of data and render the application on devices with limited
processing power.
Koradia et al. [13] reported cellular data connectivity la-

tencies in India reaching up to 1200 ms. When compounded
by the data processing demands of CSR on the client side,
such latencies can significantly amplify delays and diminish
user experience.

Additionally, in bandwidth-constrained environments, TCP
flows encounter high packet loss rates, severe unfairness,
and repetitive timeouts, which could render CSR-based web-
sites practically unusable [26]. Furthermore, by requiring
low-end devices to process and render entire applications
locally after downloading substantial data, CSR frameworks
place a disproportionate burden on users in these regions,
leading to poor performance and significantly hampered
access to the digital economy. This challenge exacerbates
the global digital divide, as individuals with limited internet
access and processing capabilities experience slower and less
responsive websites, hindering their ability to participate in
the digital economy [4, 11].
One of the main objectives behind this work is to ensure

that the adoption of novel technologies like Next.js, particu-
larly at scale, is conducted responsibly, promoting equitable
access to digital resources. With features like SSR, static
site generation (SSG), and caching by default, Next.js seems
like a promising solution to reduce client-side processing
and improve performance for users in low-resource settings.
However, it is essential to validate the efficacy of these as-
sumptions through rigorous evaluation to ensure that its
adoption addresses the challenges faced in developing re-
gions.

3.2 Businesses and other Institutions
In 2006, Amazon showed that each 100ms increase in page
load time correlated with a 1% reduction in sales, represent-
ing an annual loss of $107 million—an impact equivalent to
$3.8 billion [7].

This study shows how critical web performance is to busi-
ness success. However, the reliance on CSR introduces signif-
icant drawbacks, as the need for browsers to download and
execute large JavaScript files can lead to slower initial page

loads [14], frustrating users and increasing bounce rates, par-
ticularly among those with older or less powerful devices.
With studies showing that a 100ms delay can reduce conver-
sion rates by 7% and 53% of mobile users abandoning sites
that take over three seconds to load [1], it becomes impera-
tive for companies adopting newer technologies like Next.js
to ensure these migrations deliver measurable benefits [4].
Next.js holds the potential to drive better user experiences,
but once again, validating these claims is essential to justify
the significant investment in such transitions.

4 METHODOLOGY
The methodology of this work is designed in two parts: a) a
quantitative metrics analysis and b) a qualitative user expe-
rience survey. Next we explain the approach taken by each
part.

4.1 Quantitative Metrics Analysis
In the first part of the analysis, we compared important per-
formance metrics [10] relating to the different timing stages
of loading a page: metrics such as First Contentful Paint
(FCP), Time to Interactive (TTI), Page Load Time (PLT), and
Lighthouse SEO scores of websites built using both React.js
and Next.js.
One of the main challenges that we faced was to find a

dataset that contains lists of websites that are built using
both React.js and Next.js. While some organizations may
have migrated from one framework to the other, it is un-
common for both versions to remain operational and receive
consistent maintenance. We had access to a large number
of Next.js-only or React.js-only websites, but it was obvious
that comparing unrelated websites would not provide mean-
ingful insights. So to ensure a fair comparison, we had to
create two sets of the same websites using both React.js and
Next.js, which was especially challenging because Next.js
uses a file-system based router [16].

4.1.1 Defining the Testing Framework. First, we began by
outlining the specific features offered by Next.js by default to
determine which types of websites would be the most mean-
ingful to create. The features that were centered around
performance optimization were partial re-rendering, pre-
fetching, soft navigation, code splitting, caching, parallel
routes, intercepting routes, server actions, and incremental
static regeneration [20]. On top of these, the element-level
optimizations for images, videos, fonts, etc. could be addi-
tionally tested in any of the websites created.

As explained earlier, since the only way to obtain a dataset
of equivalent websites was to create it ourselves, we made
sure to rigorously choose a diverse set of applications, where
some would target specific features, while others would test

Capstone Project 1, Fall 2024, Abu Dhabi, UAE Pati

all-around performance, ensuring a comprehensive evalua-
tion of real-world use cases. Seven pairs of websites and three
pairs of web apps (with identical back-ends) were carefully
chosen for this purpose. These included a travel destination
explorer, a to-do app, a Wikipedia article viewer, a real-time
stock tracker, a GitHub project portfolio, a travel booking
website, etc [20]. Many of these had additional integrations
like embedded maps (leaflet), charting libraries like Recharts,
styling libraries like Tailwind and Bootstrap, APIs capa-
ble of sourcing real-time stock analytics, GitHub projects,
Wikipedia articles, etc [20]. Two of the web apps were full-
scale clones of popular applications—Amazon [2, 27] and
YouTube [15, 22]. This enabled us to perform a more holistic
assessment by testing the two frameworks under different
conditions.

4.1.2 LLM-Assisted Migration Workflow. To make the pro-
cess of creating the websites and web apps simpler, we de-
cided on implementing an LLM-assisted migration work-
flow that involved first creating the websites on React.js
and then using Claude-engineer to set up and migrate to
a Next.js project. Claude-engineer [9], an advanced inter-
active command-line interface, utilizes the capabilities of
the Claude 3.5 Sonnet LLM in conjunction with local system
functions to access files, initiate projects, and execute code. It
was well-trained on the Next.js documentation alongwith de-
tailed migration instructions recommended by Next.js [24].
Although the initial draft of a Next.js project was gener-

ated using the LLM-assisted workflow, subsequent manual
adjustments were necessary to fully leverage Next.js’s opti-
mization features. This refinement process required a signifi-
cant time investment. However, we realized that such a flow
of using the semi-automated LLM-assisted migration work-
flow could go on to become the recommended workflow for
similar migrations. The final versions of the websites were
hosted on Vercel [25].

4.1.3 Performance Testing and Analysis. For the purpose of
performance testing, we decided on using FCP and TTI in
three different network conditions: 4G Fast (10 Mbps, 40ms
RTT), 4G Slow (9 Mbps, 170ms RTT), and 3G (1.6 Mbps/768
Kbps 300ms RTT), under both normal and 6x lower CPU-
throttled conditions to measure the initial page load metrics
using the “Performance Window” in the Chrome Developer
Tools [6]. Metrics such as FCP and TTI are vital as they di-
rectly reflect the user’s real-world experience of loading and
interactivity [10]. We also measured the lighthouse SEOs [8].
To extensively evaluate the websites, we simulated iden-

tical sets of actions - for e.g, clicking something, searching
something, navigating, etc. - on both versions and recorded
the ‘Finish’ time in the network tab to determine the final
loading time [3]. The ‘Finish’ time was unaffected by manual
delays during the simulations, as it exclusively measured

the total time taken for loading all the resources requested.
However, due to limitations of the Network tab, we could not
replicate these tests under throttled CPU conditions. Further-
more, the network tab was paused at the end to prevent any
more network requests before reading the ‘Finish’ time. This
testing methodology was replicated across all three network
conditions. However, inherent limitations of the network tab
precluded the simulation of the throttled CPU conditions.
To prevent any selector’s bias in sourcing these values, we
made sure to take the median of three runs for every single
metric across all the websites.

4.2 User-Centric Qualitative Assessment
In addition to the quantitative evaluation, we also incorpo-
rated a qualitative evaluation to gather user feedback on
the usability and performance of the websites. This was
achieved through participatory research studies, where a
diverse group of participants from NYU Abu Dhabi were re-
cruited. 67 participants with devices of varying specifications
of GPU, RAM, and other hardware configurations were in-
cluded to analyze the website performance under real-world
contexts. They provided feedback based on their experiences
with loading times, interaction response times, navigation
smoothness, and the overall browsing experience.
The diversity of the NYU Abu Dhabi community, with

students from over 100 countries studying across several
disciplines, was chosen to bring varied perspectives and re-
sponses to the study. Two sets of surveys, where the ordering
of the websites was changed to prevent bias, were sent out
to the participants. The participants evaluated two full-scale
clones of Amazon and YouTube created in both Next.js and
React. While only two sets of web applications were tested,
this decision was deliberate and necessary to ensure that the
study could focus on the overall quality of user interaction
in a robust and controlled manner. The selection of these
applications was predicated on their capacity to rigorously
evaluate the capabilities of Next.js, encompassing a diverse
set of features representative of essential web development
use cases. By selecting clones of globally significant appli-
cations with varying use cases and design approaches, we
ensured that the insights drawn would not be skewed by
edge cases allowing us to source statistically significant data
and derive meaningful conclusions, ensuring the validity and
impact of the study.

We made sure that the links and questions were presented
as “Version 1” and “Version 2” to prevent bias based on prior
understanding of the technologies. We also ensured that
participants understood this study was not focused on the
interface design or visual aesthetics but rather on evaluating
the overall user experience, emphasizing speed and smooth-
ness during website navigation.

Evaluating Next.js: A Comparative Analysis with React.js Capstone Project 1, Fall 2024, Abu Dhabi, UAE

-1 0 1 10 100
Delta time of React - NextJS (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(0
-1

)

FCP 4G Fast
FCP 4G Slow
FCP 3G
TTI 4G Fast
TTI 4G Slow
TTI 3G
PLT 4G Fast
PLT 4G Slow
PLT 3G

(a) Without CPU throttling.

-1 0 1 10 100
Delta time of React - NextJS (s) [CPU Throttled]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(0
-1

)

FCP 4G Fast
FCP 4G Slow
FCP 3G
TTI 4G Fast
TTI 4G Slow
TTI 3G

(b) With CPU throttling.

Figure 1: Quantitative evaluation results of Next.js vs. Ract across different network conditions.

5 EVALUATION
5.1 Quantitative Results
After obtaining the data points for each metric across all con-
ditions, we calculated the delta time between the React and
Next.js versions of each website for every metric. This delta
timewas computed as the difference between the correspond-
ing values of React and Next.js (React - Next.js), providing a
direct comparison of performance. Figures 1(a) and 1(b) show
the cumulative distribution functions (CDFs) for each metric
under all network conditions (fast 4G, slow 4G, and 3G) for
both the normal CPU and throttled conditions, respectively.
The results show that the delta values are positive for almost
all metrics and network conditions, apart from a few outliers
in the case of the TTI metric for fast and slow 4G (dotted and
dashed green curves). Additionally, the results also highlight
that with slower network connectivity, all timing metrics are
improved in webpages built with Next.js compared to React,
as well as with throttled CPUs. This highlights the signifi-
cance of using Next.js to improve the overall performance
for users in developing regions suffering from both poorer
network connectivity and over-reliance on low-end mobile
devices. Finally, for the SEO evaluations, Next.js received an
average score of 100% compared to React, which received a
score of 88.8%. These results therefore help us conclusively
answer both RQ1 - that Next.js indeed has overall faster
performance compared to React.js across different network
conditions and device processing capabilities - and RQ2 -
that Next.js has better SEO metrics than React.js.

5.2 Qualitative Survey Insights
The survey received a total of 67 responses, representing ap-
proximately 30 distinct device configurations. For every ques-
tion, the participants had an option to choose on a scale of 5
values: “Next.js/React.js was clearly better,” “Next.js/React.js
was slightly better,” and “Both are equivalent.” We encoded
these to integer values from -2 to +2, taking 0 (equivalent)
as our null hypothesis. Then using the Wilcoxon p-value
method [18], we ascertained which metrics showed statisti-
cally significant results.

Figure 1 shows the response results, highlighting that par-
ticipants preferred the Next.js version of the YouTube clone
for loading and interaction-response times and the overall
smoother browsing experience. The survey also showed that
participants preferred the Next.js version of the Amazon
clone for all three metrics: faster navigation, loading and
interaction-response times, and a smoother browsing expe-
rience. This provides an answer to RQ3, where Next.js does
offer a better user experience than React.js.

6 CONCLUSION
Our results, derived from both quantitative metrics and qual-
itative user feedback, provide strong evidence that Next.js
significantly improves the performance metrics, especially
for poor network conditions, while maintaining an improved
user interaction experience. Beyond these findings, the re-
search highlighted the importance of equitable access to web
resources, emphasizing Next.js’s role in mitigating the digital
divide and fostering global network equity. This study lays
the foundation for broader investigations into the scalability
and adaptability of Next.js (and other hybrid frameworks)
across a wider spectrum of use cases, including enterprise-
level applications and globally distributed user bases. By
expanding the scope to include larger datasets and more
complex user scenarios, future research can deepen our un-
derstanding of Next.js’s potential in shaping a more inclusive
and high-performing digital ecosystem.

This work also raises important considerations for devel-
opers and organizations transitioning fromReact.js to Next.js.
The findings not only validate the performance claims of
Next.js but also highlight the practical challenges and op-
portunities in such migrations, particularly in leveraging
optimization features. Future investigations could explore
how these optimizations scale in real-world applications and
businesses with high traffic demands and diverse user bases,
paving the way for more robust frameworks tailored to the
dynamic needs of modern web development.

As technology evolves, this work serves as a hopeful step
towards bridging divides and creating a web experience that
is truly universal.

Capstone Project 1, Fall 2024, Abu Dhabi, UAE Pati

+2 +1 0 -1 -2
Response Options

0

10

20

30

Co
un

t

Wilcoxon p-value: 0.05058
(No significant difference)

React
Equal
Next.js

(a) YouTube - Faster Navigation

+2 +1 0 -1 -2
Response Options

0

10

20

30

Co
un

t

Wilcoxon p-value: 0.01732
(Significant difference)

React
Equal
Next.js

(b) YouTube - Loading And Interaction-Response

+2 +1 0 -1 -2
Response Options

0

10

20

30

Co
un

t

Wilcoxon p-value: 0.01293
(Significant difference)

React
Equal
Next.js

(c) YouTube - Smoother Browsing Experience

+2 +1 0 -1 -2
Response Options

0

10

20

30

Co
un

t

Wilcoxon p-value: 0.00024
(Significant difference)

React
Equal
Next.js

(d) Amazon - Faster Navigation

+2 +1 0 -1 -2
Response Options

0

10

20

30

Co
un

t

Wilcoxon p-value: 0.00004
(Significant difference)

React
Equal
Next.js

(e) Amazon - Loading And Interaction-Response

+2 +1 0 -1 -2
Response Options

0

10

20

30

Co
un

t

Wilcoxon p-value: 0.00001
(Significant difference)

React
Equal
Next.js

(f) Amazon - Smoother Browsing Experience

Figure 2: YouTube and Amazon clone websites quantitative evaluation.

REFERENCES
[1] Akamai Technologies, Inc. 2017. Akamai Releases Spring

2017 State of Online Retail Performance Report. https:
//www.akamai.com/newsroom/press-release/akamai-releases-
spring-2017-state-of-online-retail-performance-report

[2] Esad Akman. 2024. Next.js Amazon Clone. https://github.com/
esadakman/nextjs-amazon-clone Accessed: 2024-12-16.

[3] Kayce Basques and Sofia Emelianova. 2024. Network Features Ref-
erence - Chrome DevTools. https://developer.chrome.com/docs/
devtools/network/reference

[4] Half Nine Blog. 2024. Server-Side vs Client-Side Rendering. https:
//www.halfnine.com/blog/post/server-side-vs-client-side

[5] Moumena Chaqfeh, Rohail Asim, Bedoor AlShebli, Muhammad Fareed
Zaffar, Talal Rahwan, and Yasir Zaki. 2023. Towards a world wide
web without digital inequality. Proceedings of the National Academy of
Sciences 120, 3 (2023).

[6] Chrome Developers. 2024. Performance Panel Reference - Chrome De-
velopers. https://developer.chrome.com/docs/devtools/performance/
reference.

[7] Conductor. 2024. Amazon Page Speed Study: How Page Load Time
Affects Sales. https://www.conductor.com/academy/page-speed-
resources/faq/amazon-page-speed-study/

[8] Google Developers. 2024. Lighthouse Overview. https://developer.
chrome.com/docs/lighthouse/overview

[9] Doriandarko. 2024. Claude-Engineer: An advanced interactive CLI.
https://github.com/Doriandarko/claude-engineer.

[10] Google Developers. 2020. CoreWeb Vitals andWeb Performance Metrics.
https://web.dev/vitals/

[11] Ilya Grigorik. 2013. High Performance Browser Networking. O’Reilly
Media, Inc., Sebastopol, CA. https://hpbn.co/

[12] Taufan Iskandar, Muharman Lubis, Tien Kusumasari, and Arif Lubis.
2020. Comparison between client-side and server-side rendering in
the web development. IOP Conference Series Materials Science and
Engineering 801 (06 2020), 012136.

[13] Zahir Koradia, Goutham Mannava, Aravindh Raman, Gaurav Aggar-
wal, Vinay Ribeiro, Aaditeshwar Seth, Sebastian Ardon, Anirban Ma-
hanti, and Sipat Triukose. 2013. First impressions on the state of
cellular data connectivity in India. In Proceedings of the 4th Annual
Symposium on Computing for Development (Cape Town, South Africa)
(ACM DEV-4 ’13). New York, NY, USA, Article 3, 10 pages.

[14] Jesutofunmi Kupoluyi, Moumena Chaqfeh, Matteo Varvello, Russell
Coke, Waleed Hashmi, Lakshmi Subramanian, and Yasir Zaki. 2022.
Muzeel: Assessing the impact of JavaScript dead code elimination
on mobile web performance. In Proceedings of the 22nd ACM Internet
Measurement Conference. 335–348.

[15] M. Lerner. 2024. YouTube Clone. https://github.com/m-ler/youtube-
clone/tree/main Accessed: 2024-12-16.

[16] Next.js Team. 2024. Layouts and Pages - Next.js Documentation. https:
//nextjs.org/docs/app/getting-started/layouts-and-pages.

[17] Carl Nordström and August Dixelius. 2023. Comparisons of Server-
side Rendering and Client-side Rendering forWeb Pages. (2023). https:
//uu.diva-portal.org/smash/get/diva2:1775555/FULLTEXT02.pdf

[18] University of Virginia Library. 2024. The Wilcoxon Rank-Sum
Test. https://library.virginia.edu/data/articles/the-wilcoxon-rank-
sum-test Accessed: 2024-12-16.

[19] Stack Overflow and Statista. 2024. Most Used Web Frame-
works Among Developers Worldwide, as of 2024. Statista.
https://www.statista.com/statistics/1124699/worldwide-developer-
survey-most-used-frameworks-web/

[20] Swostik Pati. 2024. Next.js vs React.js. https://swostikpati.notion.site/
nextjs-reactjs

[21] React Team. 2024. React - A JavaScript library. https://react.dev/
[22] Kenny’s Tech. 2024. React YouTube Clone. https://github.com/kennys-

tech/react-youtube-clone?tab=readme-ov-file Accessed: 2024-12-16.
[23] Vercel. 2024. Next.js - The React Framework for Production. https:

//nextjs.org/
[24] Vercel. 2024. Upgrading from Vite to Next.js App Router. https://nextjs.

org/docs/app/building-your-application/upgrading/from-vite.
[25] Vercel. 2024. Vercel Home - Deploy and Host Your Web Projects.

https://vercel.com/home.
[26] Yasir Zaki, Jay Chen, Thomas Pötsch, Talal Ahmad, and Lakshmi-

narayanan Subramanian. 2014. Dissecting Web Latency in Ghana. In
Proceedings of the 2014 Conference on Internet Measurement Confer-
ence (Vancouver, BC, Canada) (IMC ’14). Association for Computing
Machinery, New York, NY, USA, 241–248.

[27] Doğan Özgür. 2024. Amazon Clone in React. https://github.com/
doganozgur/amazon-clone-react Accessed: 2024-12-16.

https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://www.akamai.com/newsroom/press-release/akamai-releases-spring-2017-state-of-online-retail-performance-report
https://github.com/esadakman/nextjs-amazon-clone
https://github.com/esadakman/nextjs-amazon-clone
https://developer.chrome.com/docs/devtools/network/reference
https://developer.chrome.com/docs/devtools/network/reference
https://www.halfnine.com/blog/post/server-side-vs-client-side
https://www.halfnine.com/blog/post/server-side-vs-client-side
https://developer.chrome.com/docs/devtools/performance/reference
https://developer.chrome.com/docs/devtools/performance/reference
https://www.conductor.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://www.conductor.com/academy/page-speed-resources/faq/amazon-page-speed-study/
https://developer.chrome.com/docs/lighthouse/overview
https://developer.chrome.com/docs/lighthouse/overview
https://github.com/Doriandarko/claude-engineer
https://web.dev/vitals/
https://hpbn.co/
https://github.com/m-ler/youtube-clone/tree/main
https://github.com/m-ler/youtube-clone/tree/main
https://nextjs.org/docs/app/getting-started/layouts-and-pages
https://nextjs.org/docs/app/getting-started/layouts-and-pages
https://uu.diva-portal.org/smash/get/diva2:1775555/FULLTEXT02.pdf
https://uu.diva-portal.org/smash/get/diva2:1775555/FULLTEXT02.pdf
https://library.virginia.edu/data/articles/the-wilcoxon-rank-sum-test
https://library.virginia.edu/data/articles/the-wilcoxon-rank-sum-test
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://www.statista.com/statistics/1124699/worldwide-developer-survey-most-used-frameworks-web/
https://swostikpati.notion.site/nextjs-reactjs
https://swostikpati.notion.site/nextjs-reactjs
https://react.dev/
https://github.com/kennys-tech/react-youtube-clone?tab=readme-ov-file
https://github.com/kennys-tech/react-youtube-clone?tab=readme-ov-file
https://nextjs.org/
https://nextjs.org/
https://nextjs.org/docs/app/building-your-application/upgrading/from-vite
https://nextjs.org/docs/app/building-your-application/upgrading/from-vite
https://vercel.com/home
https://github.com/doganozgur/amazon-clone-react
https://github.com/doganozgur/amazon-clone-react

	Abstract
	1 Introduction
	2 Related Work
	2.1 Comparison of SSR and CSR
	2.2 Rendering Performance Analysis

	3 Motivation
	3.1 Towards Global Network equity
	3.2 Businesses and other Institutions

	4 Methodology
	4.1 Quantitative Metrics Analysis
	4.2 User-Centric Qualitative Assessment

	5 Evaluation
	5.1 Quantitative Results
	5.2 Qualitative Survey Insights

	6 Conclusion
	References

