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ABSTRACT

Today’s mobile web pages are becoming computationally
intensive due to their focus on appearance, interactivity, and
data collection in order to enhance the user experience and
increase the user retention and engagement. To support the
plethora of functionalities, web developers rely heavily on
JavaScript, specifically large general-purpose third-party li-
braries. Although this tends to accelerate the development
cycle, it increases the overall page complexity by bringing
additional functions that might not be utilized by the page
but are unnecessarily processed by the browser. In this paper,
we propose Muzeel (which means eliminator in Arabic); a
solution for eliminating JavaScript functions that are not
used in a given web page-this is commonly referred to as
dead code. Despite the fact that dead code is never executed,
it impacts the overall performance of the web page since it is
downloaded and processed by the browser. Muzeel extracts
all of the page event listeners (upon page load), emulates user
interactions using a bot that triggers each of these events,
and then generates a comprehensive function call graph in
order to eliminate the dead code of functions that are not
called by any of these events. Our evaluation results span-
ning several Android mobile phones and browsers show that
Muzeel speeds up the page load by around 30% on low-end
phones, and by 25% on high-end phones under 3G network.
It also reduces speed index (which is an important user ex-
perience metric) by 23% and 21% under the same network
on low-end, and high-end phone, respectively. Additionally,
Muzeel reduces the overall download size while maintaining
the visual content and interactive functionality of the pages.
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1 INTRODUCTION

The reuse of existing JavaScript code is a common web devel-
opment practice which speeds up the creation and the amend-
ment of web pages, but it requires sending large JavaScript
files to web browsers, even when only part of the code is
actually required. In this paper, we propose to eliminate
JavaScript functions that are brought to a given web page,
but never used. We refer to these functions as dead code.

The elimination of dead code is inspired by the fact that
even though an unused function is never executed, it im-
pacts the overall performance of the page because it must be
processed by the browser. The impact of JavaScript is further
worsened for users who solely rely on low-end smartphones
to access the web [14]. Studies show that pages require over-
all triple processing time on mobile devices compared to
desktops [9]. While methods like script-streaming (parsing in
parallel to download) and lazy parsing can reduce JavaScript
processing time, only a maximum of 10% improvement of
the page load time is reported [11].

New research has shown that dead code elimination has
the potential to reduce the amount of first-party Javascript
by 38% and third-party Javascript by up to 71% [? ]. This,
however, is an over-estimation, as concretely identifying the
used/unused Javascript functions has proven difficult. Of
the many difficulties associated with dead code discovery in
Javascript, perhaps the most restricting has been accounting
for the wide range of user interactions that could occur on
a page. Given that user interactivity is a key feature that
JavaScript provides in web pages, the dead code cannot be
accurately identified unless all JavaScript functions that are
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executed when the user interacts with the page are reported.
So far research has side-stepped this challenge. [? ] and the
dynamic analyzer of [15] attempt only to eliminate code
that is not required at page load. Alternatively, instead of
identifying only the dead code for potential elimination, [13]
removes “less-useful” functions, a process that can drastically
impact the functionality of interactive pages (more than 40%
loss of page functionality can be witnessed when saving 50%
of the memory).

We design and implement Muzeel; a novel dead code elim-
ination tool which aims to preserve user interactivity while
eliminating unused code. In Muzeel, in addition to identifying
all functions called on page load, we use browser automation
to simulate all potential user events after the page loads to
generate a comprehensive function call graph. Based on the
generated function call graph, Muzeel eliminates all unused
functions from the page.

In doing this, Muzeel aims to mitigate the impact of JavaScript

on performance degradation of web pages without imposing
constraints at the coding style level.

In the median page, results so far have shown a reduction
in total Javascript functions by 70%, resulting in bandwidth
savings of 50%, and a reduction in page load time of 1s. Qual-
itative analysis using pQual is actively ongoing to determine
functional similarity of the pages after dead code elimination.

2 RELATED WORK

Historically, research into Javascript simplification has mainly
been focused on two areas - cutting down unused modules
through methods such as “tree shaking” and shrinking the
amount of text in Javascript file sizes through “minification”.
Though minification allows Javascript files to be smaller, it
may not significantly affect the processing time of Javascript
in the browser[5]. This is because minified Javascript still
remains relatively functionally equivalent to the original
code. “Tree shaking” — removing unused Javascript modules
from imported dependencies - is more ambitious in its ap-
proach and can potentially provide noticeable processing
time benefits if done right [2]. Popular Javascript bundler,
Webpack recently included tree-shaking (also called dead
code elimination) as an optional feature during bundling[3].
Their tree-shaking process relies on static analysis to identify
unused modules based on “import” statements. The break-
through leading to its development was the emergence of
Javascript ES6 which eliminated dynamic imports through
the “require” statement[2]. Prior to ES6, users could import
new packages at will, depending on the satisfaction of cer-
tain conditions in the program which provided a challenge
to detecting unused Javascript code statically[8].
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Though this has now been resolved, it was just one of
many dynamic features of Javascript which were hinder-
ing static analysis. Madsen, Livshits, and Fanning, noted
“JavaScript is a complex language with a number of dynamic
features that are difficult or impossible to handle fully stati-
cally and hard-to understand semantic features” [12, p. 501].
Given this difficulty, dynamic analysis of Javascript modules
has come to the forefront. Tools such as the Chrome Cover-
age API embedded in Google Chrome have been developed
to help developers monitor used Javascript modules during
user traces[4].

Contributing to this field of dynamic Javascript analy-
sis, ideas have recently emerged to not just remove un-
used Javascript modules but to remove unused functions
in imported Javascript modules, further reducing the size of
Javascript files and consequently the processing time in pars-
ing Javascript. Systems of removing unused or superfluous
Javascript code have been proposed by Vazquez et al [16]
as well as Goel and Steiner [10]. Both systems are largely
similar and depend on a proxy server to authoritatively serve
modified Javascript. Due to this constraint, Goel and Steiner
target their solution to CDNs and website vendors and as
such limit their solution to serving first-party Javascript[10,
p- 3].

Besides the type of Javascript files that can be served, a ma-
jor limitation shared with all dynamic analysis approaches, is
the mechanism of attaining execution traces which capture
the full range of permissible activity on the site. Vazquez et
al suggested using test files provided by the developer to gen-
erate execution traces [16, p. 22]. However, developers may
not know beforehand all possible interactions on the site.
Further, though it is good practice, not all packages are devel-
oped with complete test coverage. Their fallback approach
was to log interactions in the production environment [16,
p. 22]. However, they didn’t provide a scheme for generating
these traces in the production environment, hence begging
the question, when can we safely determine functions to be
unused? Goel and Steiner propose stopping logging when
the page load completes — that is when the "onloadend" event
is triggered. However they concede that this greatly over-
estimates the number of unused functions primarily due to
the fact that onclick events and other user interaction events
that are triggered after page load would not be considered
in such a trace [10, p. 5].

Hence, though dynamic analysis of Javascript to determine
unused functions has yielded promising ideas, these ideas
still need refinement to work effectively in practice.

Dead code elimination in Javascript is a very "hot topic"
now [?, p. 402] and with the growing popularity of stan-
dalone Javascript applications, this is only set to rise. Envi-
sioning this spike, a Javascript dead code elimination frame-
work, Lacuna, was developed which provides an extendable
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framework for developing new dead code elimination tech-
niques, as well as combining different dead code elimination
approaches [?, p. 402]. Lacuna generates a call graph of all
functions in a Javascript web application [?, p. 405]. It then
provides an interface for analyzers to mark which functions
they identified as necessary [?, p. 406]. Lacuna then elimi-
nates all unmarked functions on the call graph. Given that
Lacuna was developed as a tool for developers/researchers
[?, p. 403], it works directly on the actual source directory
of a web application, on the computer in which it is hosted.

3 METHODOLOGY

We developed Muzeel, a dynamic JavaScript analysis tool
which aims to identify and eliminate dead code in web pages
while maintaining all user interactivity features on the page.
To do this, Muzeel emulates potential user interactions with
the page, by automatically triggering all events present in a
web page. From this, it is a able to generate a comprehensive
graph of function calls, and eliminate all functions that are
not present in the graph. Unlike existing approaches, Muzeel
runs dead code elimination autonomously without the need
for “execution traces” [16] or real user interactions [10].

Muzeel is envisioned as a service offered by a CDN provider
to help content owners optimize JavaScript code within their
pages. JavaScript code used in today’s web pages can be
divided broadly into two categories: first party JavaScript,
and third-party JavaScript. First party JavaScript refers to
JavaScript files that are hosted within the same authoritative
domain of the web page, by a CDN provider. Third-party
JavaScript files refer to scripts hosted externally, outside the
CDN; popular examples are Google Tag Manager, and Google
Analytics [6].

Muzeel offers a flexible solution when it comes to eliminat-
ing dead code from a web page. By default, Muzeel eliminates
dead code of first party JavaScript files, given the fact that
the CDN is the authoritative entity responsible for hosting
these files. For third-party JavaScript files, there are different
scenarios offered by Muzeel, depending on the license of the
JavaScript files, as well as the web page owner’s preferences:

e For copyrighted JavaScript files, Muzeel does not per-
form the dead code elimination process, given that
these files cannot be hosted by the CDN.

e For open-source/copylefted JavaScript files, Muzeel
can perform the dead code elimination if the web page
owner agrees to host local versions of these files.

Figure 1 shows Muzeel’s architecture and functioning. The
dead code elimination in Muzeel involves a three-step pro-
cess: pre-processing, dead code discovery, and dead code
elimination.
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Figure 1: Muzeel’s architecture and functioning.

3.1 Pre-Processing

The pre-processing stage of Muzeel consists of multiple phases.
In the first phase, we create an internal duplicate version of

the page on which dead code elimination is carried out. This

is required given that Muzeel modifies the JavaScript files

used by a page and dynamically analyzes the modified web

page in an automated environment. To create this duplicate

version of the page, Muzeel copies and hosts the web page

along with its JavaScript files in an internal CDN back-end

server. In the second phase, we assign a unique ID to each

JavaScript function in every JavaScript file embedded in a

webpage. Each function is modified to output its assigned ID

to the (browser) console when a page event that is calling

that function is triggered. With the comprehensive consid-
eration of page events, functions that are never called are

labelled as unused.

When the identification process is completed, Muzeel loops
through the JavaScript files used by a web page and gener-
ates an Abstract Syntax Tree (AST) per file. The AST for a
JavaScript file identifies each function in the file by the name
of the function as well as its start and end line numbers.
Muzeel picks up both normal and anonymous functions - a
capability that is missing in the Google Closure Compiler
[10]. In Muzeel, each function is handled independently, re-
gardless of whether it is nested in another function or not. In
other words, functional hierarchies are not considered, given
fact that Muzeel’s dead code elimination does not depended
on function hierarchy.

Once all functions in every JavaScript file are identified,
Muzeel constructs an edge between each function and a “base
caller node” (base). This edge is labeled as a “constructed
edge” — borrowing from the Lacuna function graph naming
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convention. Figure 2 shows an example of the graph we cre-
ated for a dummy webpage which imports three JavaScript
libraries accounting for a total of 4 functions. Each leaf node
represents an actual function and stores the URL of the
Javascript file it is located in, as well as its start and end
position in the file.

Constructed edge Constructed edge

Constructed edge Constructed edge

(analytics.js
, start: 20,
end: 50)

(interact.js,
start: 60,
end: 300)

(jquery.js,
start: 200,
end: 300)

(jquery.js,
start: 0,
end: 100)

Figure 2: Function Call Graph

Our function call graph construction process is a simplifi-
cation over the process described in Lacuna [15]. The major
difference between the two approaches is that the function
call graph we construct is of height 1 — that is to say, it is a
single-level tree. Such a graph may not yield a “complete” rep-
resentation of function call graph from a visual perspective
- in the sense that it does not account for function hierar-
chy i.e. which function calls which - but it is significantly
more space-efficient as less edges need to be constructed
between nodes. This approach also requires less overhead in
the initial construction. In Lacuna, a complete function call
graph is constructed by initially connecting all functions to
each other and then to the base caller node. However, as the
purpose of Muzeel is just to identify the unused functions,
a “complete” representation of the function call graph is not
necessary; hence, we only connect every function to the base
caller node.

When the initial call graph is created, a special console
log call is added to the first line of every function, which
includes the name of the file that embeds the function, as
well as the function’s start and end line numbers. This allows
the detection of the function being called when a page event
is triggered. This modification is applied to the web page’s
JavaScript files hosted by the CDN back-end server in order
to allow serving them back during the dead code discovery
process.

3.2 Dead Code Discovery

After all JavaScript functions on a web page are identified
and log calls added, Muzeel loads the updated web page using
an automated browser. We leverage the browser’s built-in
functionality to identify all event listeners on the page, and
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map these events to their corresponding elements. Given
JavaScript’s dynamic qualities, it is difficult to ascertain from
static analysis what functions are called [15], and hence the
listeners attached to objects. Therefore, leveraging a browser
at this stage is crucial to identify user-based events.

After identifying and mapping the events to elements on
the page, we traverse the elements of the page in depth-first
order, in doing so, creating an event dependency graph based
on the events mapped to these elements. For each element
we encounter, we use a browser automation tool to trigger
the events associated with the element. The functions called
when an event is triggered are logged to the console. We
monitor the console for log statements to obtain a list of
functions that have been called. In the following, we discuss
this and design considerations in the dead code discovery of
Muzeel.

3.2.1 Elements Identification. In an HTML document repre-
senting a given web page, elements are structured internally
using different tags. Each tag can have a unique “id”, and
a reference to a pre-defined “class” of attributes from the
accompanying Cascading Styling Sheets (CSS) files, which
set the different visual attributes for a given tag. For elements
with no ancestor with an “id” or “class” attribute, we use the
“body” element as the root, and use position based indexing
from the body to construct the XPath. Using XPath element
identification allows to identify elements across reloads.

3.2.2 Handling Events. Muzeel considers all commonly used
JavaScript interaction-based events, including but not lim-
ited to: mousedown, mouseup, mouseover, mouseout, keydown,
keypress, keyup, dblclick, drag, dragstart, and dragend.

Muzeel constructs an event-dependency graph and tra-
verses this graph in a depth-first order using the XPath, such
that a group of dependent events can be triggered in a deter-
ministic order.

3.2.3 Hidden Elements and Attribute Changes. Web pages
can contain “hidden elements”, or elements which are not
always visibile on the first load of the page. Additionally,
elements may experience attribute changes as a result of
triggering events on other elements in the page. Given that
the XPath identifier is formed from the tag name and the “id*
or “class“ attributes of the elements at the first load, if an
attribute change occurs, we may no longer be able to identify
corresponding elements using the initially constructed XPath.
For elements with event listeners attached, in cases of hidden
elements and attribute changes, Muzeel adds their XPath to
a retry queue. Then, it retries finding the element after every
successful interaction with other elements. The rationale is
that some interactions with another element on the page may
make an element in the retry queue visible, or may reset an
element’s attributes to its initial state, allowing the element



Muzeel: A Dynamic Event-Driven Analyzer for JavaScript Dead Code Elimination in Mobile Web

in the retry queue to be discovered with its initial XPath.
After that, if elements remain in the retry queue, we reload
the page and attempt to find each of them. It is possible
that elements remain in the retry queue after the end of the
dead-code discovery process (See Section ?7?).

3.3 Dead Code Elimination

When the above process completes, we use the browser’s con-
sole logs — which contains unique identifiers of the JavaScript
functions which were called - to annotate the function call
graph. The functions which are left unmarked are then re-
moved from their respective Javascript files.

Note that Muzeel implicitly considers the nested functions.
If triggering an event leads to calling a nesting function, the
nested function will also be called, and both will be reported
in the browser’s console, and consequently in the graph.
Similarly, in the case where a nesting function is not called,
all nested functions are also removed. This means that even
though Muzeel does not preserve the hierarchy amongst the
functions in the initial call graph construction, it successfully
obtains a complete trace of called functions, and therefore,
the functions that are not called can be identified as unused
functions.

4 MUZEEL EVALUATION

In this section, we evaluate Muzeel. The evaluation revolves
around: dead code elimination potential over a large dataset,
performance (page timing metrics, page size, number of re-
quests), resource utilization (CPU, memory, and battery sav-
ings), and interplay with different browsers, phone types,
and networking conditions.

4.1 Methodology

Given that an actual CDN deployment is challenging, we
deploy Muzeel using the next most realistic scenario. We
assume a medium CDN provider hosting the 50,000 most
popular websites [7] from Alexa’s top 1M list. We then dedi-
cate a powerful server machine (equipped with 64 cores and
1 TB of RAM) to “crawl” the landing pages of these 50,000
websites. The pages are loaded via Chrome while recording
the full HTTP(S) content and headers using mitmproxy [1].
Next, we produce Muzeel-ed pages by running our dead code
discovery and elimination mechanism. Finally, we setup a
CDN edge node (10 ms latency to the user [? ] when assum-
ing a fast WiFi) which can serve both original and Muzeel-ed
pages. This is achieved using mitmproxy which intercepts
regular browser traffic and serves it locally, emulating the
role of a CDN edge node. Testing devices are regular Android
phones where mitmproxy’s root CA (Certificate Authority)?
is installed to properly handle HTTPS. Note that this step is

Thttps://docs.mitmproxy.org/stable/concepts-certificates/
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only required for testing purposes as an actual CDN owns
the certificates for the domains it serves.

The client-side testbed consists of several Android mobile
devices - from low end (Xiamoi Redmi Go, Samsung J3) to
high end (Samsung S10) — whose characteristics are summa-
rized in Table ??. For most of our tests we rely on Chrome,
as it is today’s most popular browser. We also experiment
with Firefox, Edge, and Brave, which was chosen for its rais-
ing popularity (current 25 million monthly users [? ]) and
advanced adblocking capabilities [? ]. The phones connect
to the Internet over a fast WiFi — with a symmetric upload
and download bandwidth of about 100Mbps; when needed,
network throttling was used to emulate different cellular
networks. We emulate three different cellular networks:

e 3G: this represents a slow cellular network with a
download bandwidth of 1.6Mbps, upload bandwidth
of 768 Kbps, and a round trip time of 300ms.

o LTE: this represents a moderate cellular network with
a download/upload bandwidths of 12Mbps, and a round
trip time of 70ms.

e LTE+: this represents a fast cellular network with a
download bandwidth of 42Mbps, upload bandwidth of
25Mbps, and a round trip time of 40ms.

Each mobile device connects via USB to a Linux machine
which uses the WebPageTest browser automation tool. This
tool is used to automate both web page loads and telemetry
collection, performance metrics and network requests. We
focus on classic web performance metrics [? ](FirstContent-
fulPaint, SpeedIndex and PageLoadTime), as well as CPU,
memory, and bandwidth usage. For the Samsung J3, we also
report on battery consumption measured by a power meter
directly connected to the device in battery bypass [? ]. Given
that not all browsers on Android allow communication with
their developer tools, which is used by WebPageTest, we
have also developed a tool which uses the Android Debug-
ging Bridge (adb) [? ] to automate a browser, launch and
load a webpage, while monitoring resource utilization. We
then leverage visualmetrics? to extract performance tim-
ing metrics from a video of the webpage loading.

4.2 Web Pages Cloning

4.3 The Potential of Muzeel

We start by studying the ability of Muzeel to identify and elim-
inate JavaScript dead code. We consider the following met-
rics: percentage of eliminated JavaScript functions, JavaScript
size reduction, time required per page, and “running fre-
quency”, which measures how frequently Muzeel should run
depending on how quickly web pages change.

Zhttps://github.com/WPO-Foundation/visualmetrics
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their bytes, respectively. The outer figures show the his-

tograms computed over a bin size of 2, whereas the inner
figures show the Cumulative Distribution Functions (CDFs).

It can be seen from Figure 3(a) that about 20% of JavaScript
files had nearly a 98-100% eliminated JavaScript functions®.
The CDF also shows that, on median, the percentage of elim-
inated JavaScript functions per file is about 70%.

3This is computed as the ratio between the number of eliminated functions
to the overall number of functions in the original JavaScript file.
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Additionally, Figure 3(b) shows that around 80% of JavaScript
files’ percentage of eliminated size scatters almost uniformly
across the 2-98 percentages. About 10% of the JavaScript files
have a percentage of eliminated size of about 0-2% given
that most of these files are small and Muzeel only removes
the functions’ bodies but keeps the functions’ headers intact.
On the other hand, the final 10% of the JavaScript files have
an eliminated size of 98-100%. The CDF also shows that the
percentage of eliminated size per JavaScript file is 50% at the
median.

To understand Muzeel’s dead code elimination on the over-
all page rather than the individual JavaScript files, we com-
puted both the percentage of the eliminated functions and
the eliminated bytes on a per page bases. The results are
shown in Figures 3(d) 3(e), respectively. Figure 3(d) shows
a Normal distribution for the per-page percentage of elim-
inated JavaScript functions, with a mean around 70%. The
results show that for most pages the percentage of eliminated
JavaScript functions ranges between 50% and 90% (evident
by the CDF shown in Figure 3(f). This is a significant deduc-
tion in the number of unused JavaScript functions which
can be eliminated without impacting the pages content or
functionality. Figure 3(e) shows the size reduction in bytes
of the above JavaScript dead code elimination on a per page
basis. The results show a similar Normal distribution with a
mean of more than 55%. It can also be seen that for most of
the pages the JavaScript size reduction ranges from 30% to
90% (evident by the CDF shown in Figure 3(f), which further
strengthen the potential of Muzeel.

Finally, we assess the time complexity of Muzeel. We com-
pute the time taken to perform the dead code elimination
for each of the web pages. Figure 3(c) shows the histogram
(and CDF) of the aforementioned time in minutes. The figure
shows that for about 80% of the pages, Muzeel requires at
most 5 minutes. Note that this duration was obtained as-
suming up to 6 cores used concurrently. For the remaining
20% of the pages, we measured durations of up to 20 min-
utes. This result suggests that Muzeel can be easily run each
time a webpage is updated, to ensure the correctness of the
JavaScript deadcode elimination. On our powerful server, by
dedicating all 64 cores to the process, this process would take
about 30 seconds, on median.

4.4 Muzeel Performance

In contrast to the previous evaluation that focused on high-
lighting the percentages of eliminated JavaScript dead code,
here, we study the impact of the eliminated dead code on
the overall user experience. For this evaluation, we use three
Android mobile devices (see Table ??) and 200 web pages
selected from the 50,000 that we have previously cloned and
Muzeel-ed. These pages were selected as follows. First, we
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consider the 1,500 most popular pages from our data-set.
Next, we divided the 1,500 pages into four buckets by expo-
nentially increasing the bucket size (doubling the bucket size
every step), staring with a bucket size of 100 and ending with
a bucket size of 800. Then from each bucket we uniformly
chose 50 pages. We compare the performance of these 200
pages with dead code eliminated by Muzeel with respect to
their original versions. Each page was loaded 5 times in each
version, and for each metric we consider the median out of
the 5 runs.

4.4.1 Network-Based Evaluation. Figure 4 shows the CDFs
of the delta performance results of Muzeel-ed pages with
respect to their original versions, in terms of the aforemen-
tioned timings metrics, using both the low-end and the high-
end phones, under three emulated networks: 3G, LTE, and
LTE+. For each page and metric, the delta is computed by sub-
tracting the value of that metric measured for the Muzeel-ed
page from the value measured for the corresponding original
page. It follows that values bigger than 0 represents Muzeel
savings, while values smaller than zero represent penalties.
Experiments were conducted using Chrome.

FirstContentFulPaint (FCP) is a web quality metric captur-
ing the first impression of a website, which many users often
associate with what defines a webpage “fast”. Figure 4(a)
shows three trends, regardless of network condition and
device. Some webpages (20-30%) show minimal slow down
(average of few hundred ms), some exhibit no performance
difference (up to 40% on LTE and LTE+), and the majority (up
to 60% in 3G) show significant FCP speedups, up to several
seconds. Intuitively, Muzeel speedups arise from JavaScripts
which are saved before FCP. Given this metric is quite fast,
and JavaScript tend to be loaded later in a page, it is expected
to see many webpage with equivalent FCP between their
original and Muzeel-ed version. More unexpected are the few
negative results. Their explanation lies in the intricacy of the
web — and the HTTP protocol itself — where removing or
shrinking some objects can change the ordering of requests,
by anticipating a larger object even if not contributing to a
specif metric. The figure also shows much higher speedups
and slowdowns when considering 3G; this is expected given
that the lower bandwidth inflates the differences between
the two loading strategies.

Next, we focus on SpeedIndex (SI) a web quality metric
which aims at capturing the “average” user experience. Com-
pared with FCP, Figure 4(b) shows a clear shift to the right,
with now 70-80% of the pages benefiting some speedups.
This happens because SI is an overall “later” metric which
gives more chances to Muzeel to offer its savings. The same
trend is also confirmed in Figure 4(c), which instead focuses
on the PageLoadTime (PLT), or the time at which a browser
fires the onload event, suggesting that all content has been
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Network Phone PLT SpeedIndex Dom complete
%  Muzeel Original %  Muzeel Original %  Muzeel Original

3G LowEnd 31.5 31.7 46.3 23.4 8.5 11.1 22.7 23 29.8
3G HighEnd  25.8 33.7 45.4 21.5 8.6 10.9 21.6 23.1 29.5
LTE Low-End 273 11.2 15.5 19.5 3.8 4.8 17.9 7.9 9.6
LTE High-End  30.1 9.4 13.5 16.3 33 4 16.7 6.6 7.9
LTE+ Low-End  29.2 9.7 13.7 221 3.4 4.3 20.9 6.2 7.8
LTE+ High-End 25.6 7.8 10.5 12.2 3 34 17.7 4.8 5.9

Table 1: Muzeel’s median results

Figure 5: CDF of bandwidth consumption across
browsers: Brave, Chrome, Edge, Firefox.

loaded. In this case, Muzeel offers speedups for 90-95% of the
webpages. With respect to the networking conditions, both
figures confirm the previous trend with much higher deltas
in presence of 3G. With respect to the mobile devices, the
figures show higher benefit for the low-end, likely due to a
reduction in CPU usage as we will discuss later.

4.4.2 Browser-Based Evaluation. Assessed Muzeel’s Web
performance across a variety of network conditions, we
here focus on variable browsers: Chrome, Firefox, Edge, and
Brave. In this evaluation, we study resource utilization (CPU,
bandwidth, and battery when possible) and also report on
SpeedIndex (SI). Experiments were run both on a high-end
and a low-end device; differently from before, we replace
the low-end device with a Samsung J3 which we have previ-
ously connected to a power meter for fine-grained battery
monitoring.

Figure 5 shows the CDF of the delta bandwidth utilization
(original - Muzeel-ed) across browsers. The figure shows,
overall, very similar savings across devices for the same
browser, which is expected and thus confirm correctness
in the experimentation technique. The figure confirms that
Chrome and Edge are very similar browsers, and indeed

Muzeel achieves equivalent bandwidth savings on both browsers:

median of about 400KB, up to multiple MBytes. Firefox is
also quite similar, although providing some extra savings
to a couple of websites. When considering Brave, the band-
width savings from Muzeel are reduced by about 50%. This
happens due to the lack of tracking and advertisement code
- mostly JavaScript — which Brave removes via its integrated
adblocker, thus giving less a chance to Muzeel to provide
savings. However, even in the case of Brave Muzeel realizes
data savings in the order of MB for 10% of the webpages.
Note that Brave runs a very aggressive adblocker, and thus
these numbers represent a lower bound on the expected data
savings provided by Muzeel in presence of adblocking.
Following up from the previous result, we next investigate
how fast (or slow) Muzeel would make the user experience

across browsers and devices. We only report on SpeedIndex
(SI) given that it is the web timing metric which captures the
“average” end-user experience and for which the previous
section has shown “average” performance improvements.
Accordingly, Figure 6(a) shows the CDF of SpeedIndex per
browser and device. The figure shows an overall trend simi-
lar to the previous result (see Figure 4(b)), with about 70%
of the websites showing performance improvements of up
to several seconds. Next, 10-20% of the pages (according to
browser and device) shows minimal slow down of a maxi-
mum of 150ms, followed by a longer tail which can reach up
to 5 seconds. The figure shows that Brave benefits from most
performance improvements, which is counter-intuitive given
the previous result on the bandwidth savings. We conjecture
that this additional improvements originate from reduced
load on Brave’s adblocker, a complex task whose extra cost,
significant especially on low-end devices, is usually amor-
tized by bandwidth savings. In this case, Muzeel helps Brave’s
adblocker by achieving similar bandwidth savings with less
computation cost from the device.

Next, we evaluate Muzeel’s impact on CPU consumption.
We sample CPU usage once per second during a web page
load, and then report the median consumption. Accordingly,
Figure 6(b) shows the CDF of the (delta) median CPU uti-
lization across browsers and devices. As above, Chrome and
Edge — on a given device — achieve very similar trends. Dif-
ferently from before, the figure shows a larger fraction of
websites (up to 45% in the case of Brave on J3) for which
Muzeel causes extra CPU usage, up to a 10% increase. How-
ever, note the 20-30% of these websites are within a 1% CPU
increase which is just too small to be statistically signifi-
cant (same holds for an even larger fraction of a 1% CPU
decrease, as purposely highlighted by the x-axis). Larger
CPU degradation is instead associated with websites with
massive speedups (more than one second for 10-20% of the
websites) where Muzeel compresses the overall page load in
a shorter time causing a temporary burst in CPU usage. Last
but not least, the figure shows overall less CPU variation,
either positive or negative, in the case of Brave, regardless
of the device. This happens for two reasons: 1) Brave is a
lean browser with overall smaller CPU consumption than,
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for instance, Chrome, 2) less impact due to the lacks of ads,
as shown by Figure 5.

Finally, we focus on the J3 device only and comment on
battery consumption. We use a power meter to derive the
mAh consumed during a original and Muzeel-ed webpage
load, and then compute their delta. Given that mAh are hard
to related to actual savings/penalty, we then report the result
as percentage of the battery consumption of the original
version.

5 CONCLUSION

Thus far, we have developed a procedure to identify and
remove unused Javascript functions from modules using dy-
namic analysis. Unlike previous dynamic analysis approaches
which did not account for user interactivity or which re-
quired execution traces to simulate user interaction, our
approach attempts to simulate all possible user interactions
automatically using the event listeners attached to nodes on
a page.

From a quantative standpoint, we have recorded Work is
currently ongoing to evaluate the effects on the page after
dead code elimination has been completed but results thus
far have been promising.

Should this project be successful, we would be able to cut
down not just the number of Javascript files served, but also
the number of functions contained in each Javascript file.
This has the potential to greatly shrink Javascript file sizes
and also improve Javascript processing times on the web.
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