
QLUE: A Computer Vision Tool for Uniform
Qualitative Evaluation of Web Pages

Waleed Hashmi
Computer Science, NYUAD
waleedhashmi@nyu.edu

Advised by: Dr. Yasir Zaki, Dr. Moumena Chaqfeh

Reference Format:
Waleed Hashmi. 2020. QLUE: A Computer Vision Tool for Uniform
Qualitative Evaluation of Web Pages. In NYUAD Capstone Seminar
Reports, Spring 2020, Abu Dhabi, UAE. 19 pages.

EXTENDED ABSTRACT
The increasing complexity of web pages has attracted a num-
ber of solutions to offer simpler versions of these pages.
These solutions have been quantitatively evaluated to show
significant speed-ups in page load times and/or considerable
savings in bandwidth and memory consumption. However,
what these solutions fail to evaluate is the qualitative impact
on their generated pages, i.e., how these solutions might lead
to missing content and broken functionality—apart from
only a few who relied on small-scaled user studies. Addi-
tionally, due to the lack of a unified qualitative metric, it is
nearly impossible to fairly compare results obtained from
different user studies campaigns, unless recruiting the exact
same human evaluators. In this paper, we demonstrate the
lack of qualitative evaluation metrics, and propose QLUE
(QuaLitative Uniform Evaluation), a tool that automates the
qualitative evaluation of web pages using computer vision.
Our results show that QLUE computes comparable content
and functional similarity scores to those provided by human
evaluators. Specifically, for 90% of 100 pages, the human
evaluators gave content similarity scores between 90% and
100%, while QLUE shows the same range of similarity scores
for more than 75% of the pages. In addition, QLUE effec-
tively evaluates the functionality of web pages, whereas this
is proven to be a challenging task for humans given the

This report is submitted to NYUAD’s capstone repository in fulfillment of
NYUAD’s Computer Science major graduation requirements.

Capstone Seminar, Spring 2020, Abu Dhabi, UAE
© 2020 New York University Abu Dhabi.

functional dependencies in modern web pages. QLUE’s time
complexity evaluation results show that the tool is capable
of generating the scores in a matter of few minutes. Finally,
the usability and benefits of QLUE is assessed by an inde-
pendent expert who co-authored one of the most recent web
complexity solutions.

1 INTRODUCTION
In order to tackle the web complexity challenge, many of the
above solutions need to strike a balance between accelerating
the pages and compromising some aspects of the pages either
in terms of their appearance or functionality. This of course
requires rigorous evaluation to highlight the impact of these
solutions on both sides of the spectrum (i.e., speedups gains,
vs. loss of content/functionality).

Conventionally, there are three high-level metrics that are
considered as key performance indicators for these tools:
(1) user experience timings metrics such as SpeedIndex and
Time-To-Interactivity, (2) resource utilization measurements
such as bandwidth, CPU, memory, energy consumption, and
(3) overall page quality in terms of content completeness and
retained functionality. The evaluations of the above solutions
focus solely on either the first metric, or the combination of
the first and the second, while ignoring the solution impact
on the overall page quality. In few work, such as the one
found in [12, 25, 30], the authors evaluated the impact on
some aspects of the page quality using simple and small-
scale user studies. Generally, to evaluate the quality of pages,
authors rely on conducting user studies. Although, we agree
that nothing can replace humans perception/intuition in
evaluating the qualitative aspects of web pages, there are
many constraints that hinders conducting large-scale user
studies. These constraints can be of financial nature—due
to the high associated cost, while others are of logistical
nature—for example the shutdown that resulted from the
COVID-19 pandemic.

To overcome the above challenges and to speed-up the de-
velopment cycles of web acceleration solutions, we propose
QLUE, a computer-vision tool that provides a standardized



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi

qualitative score that assesses the content and functional
similarity of the web pages generated by these solutions in
comparison to their original versions. QLUE is designed to
emulate the human perception of the pages content similarity
and their behavior in assessing the interactive features of the
pages. QLUE fills a very important gap in today’s literature
by providing researchers with a uniform scoring metrics that
allows them to systematically compare their results against
other solutions using a unified tool. Many of today’s direct
human evaluation strategies are neither standardized nor
validated [39], making it nearly impossible to fairly compare
results obtained from different user studies campaigns, un-
less using the exact same human evaluators. Thus, relying
on QLUE’s systematic scores can help alleviate the afore-
mentioned challenge. To the best of our knowledge, QLUE
might be the first attempt to assess the quality of web pages
created by different solutions against each other through
a unified and standardized metrics. Specifically, QLUE pro-
vides two modes of operation: a) standalone, or b) integrated
in existing tools, both operating in a fully automated manner
with minor user intervention, supporting both desktop and
mobile versions of web pages. The main contributions of the
paper are:

• Presenting a uniform approach to evaluate the qual-
ity of modern web pages using two different scoring
metrics, namely content and functional similarity.

• Effectively computing the aforementionedmetrics with-
out biasing against any individual element type (in a
matter of few minutes).

• Utilizing a “bot” that emulates human-like interactions
with the page to evaluate the functionality preserva-
tion.

• Showing similar qualitative scores when compared to
human evaluators.

We evaluated QLUE by comparing the content and func-
tional similarity scores of 100 popular web pages to a con-
ducted users study with 30 participants, each evaluating 20
pages. These pages, taken from Alexa top million sites [6],
were simplified using an existing state-of-the-art web ac-
celeration solution1. The results show that QLUE exhibits
similar trends in the overall similarity scores compared to
the user study for both the structural and functional simi-
larity, achieving a structural similarity scores of ≥ 90% for
more than 70% of the pages in contrast to 90% of the pages
for the human evaluators. Similar results were observed in
the functional similarity. This highlights that QLUE is less
forgiving than the human evaluators. This can be explained
by QLUE’s systematic rules in penalizing the score for every
missing component, regardless of it’s size or relevance.

1We omitted the name of the solution so as not to violate the double-blind
policy.

2 MOTIVATION
Over the past decade, several solutions have been proposed
to tackle the web complexity problem from both the indus-
try and academia standpoints. These solutions constitute a
promising step towards realizing the United Nation’s vision
to ensure that digital technologies provide meaningful oppor-
tunities for all people and nations [3]. More specifically, the
aim of these solutions revolves around accelerating the page
load time and improving the overall experience for millions
of users who solely rely on low-end mobile devices to access
the world wide web. These solutions can broadly be catego-
rized into three categories: blocking solutions, simplification
solutions, and pre-processing solutions.

2.1 Web Complexity Solutions
Blocking solutions: Several content-blocking solutions can
be used to transfer less-complex pages to web browsers.
These solutions can be deployed in a from of in-browser
plugins [8, 10, 15, 24, 33]. Recently, Brave [4] was released
as a new mobile browser, with built-in ad-blocking features,
for a more efficient and privacy-preserving user experience.
Additionally, Percival [7] has shown promising results in
blocking ads using deep learning, while JSCleaner [12] of-
fers a proxy-based solution to block non-critical JavaScript
elements in mobile pages to reduce the processing burdens
imposed on low-end mobile devices.
Simplification solutions: These solutions focus on alter-
ing some of the page content by either elimination or com-
pression. For example, Facebook-Lite eliminates the sec-
ondary features of Facebook [17] to offer a lighter version
for users with limited connectivity and low-end phones.
SpeedReader [18] is another attempt that is built as a Brave
in-Browser tool designed to automatically convert pages that
are suitable for the reader-mode into simpler reader-friendly
pages. In a recent work [30], the authors proposedWebMedic
to eliminate less-useful functions from web page to improve
the memory consumption on low-end mobile devices. On
the other hand, compression-based solutions focus on the
data savings at the client-end. For instance, Flywheel [9] is
a service that extends the life of mobile data plans by com-
pressing responses between the servers and the browsers.
Moreover, BrowseLite [25] is recent in-browser tool that
aims to achieve data savings by applying different image
compression techniques.
Pre-Processing solutions: Given the complexity of mod-
ern web pages, these solutions restructure the page load
process to avoid bottlenecks at the client end [36]. This is
achieved mostly by offloading complex processing from the
browser to a proxy server. For instance, In the case of Opera
Mini [1] browser, a proxy server renders web pages before
sending them to the users. Similarly, both Shandian [37] and



QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

Prophecy [32] pre-process web pages on a server and send
modified versions to the users’ browsers. In contrast, Polaris
[31] modifies the sequence in which the different page com-
ponents are loaded, which results in an overall reduction in
page load time.

2.2 Impact of these Solutions on the Page
Quality

In principle, web complexity solutions pose an impact on
the quality of the pages, where an evaluation is required to
ensure high-quality pages, and identifying the different cir-
cumstances that might lead to broken pages. In SpeedReader,
the authors noted that they did not attempt any user eval-
uation on the quality of their generated pages, and left a
deployment plan with subjective presentation evaluation
for future work. Unfortunately, SpeedReader cannot handle
around 78% of web pages [2]. One of the reasons might be
the fact that it never fetches or executes JavaScript; and we
believe that a comprehensive large-scale qualitative analysis
can help in covering a larger portion of pages. Similarly, and
despite significant speedups, the impacts of pre-processing
in Shandian and Prophecy on the page quality have not been
evaluated, and a qualitative evaluation is required to un-
derstand this impact. In contrast, the impact of BrowseLite
on the appearance of the pages is limited to image quality,
and no impact is expected on the page structure or func-
tionality. Table 1 provides a summary comparison on the
evaluation metrics used in web complexity solutions. As the
table shows, while a qualitative evaluation might not be re-
quired in compression-based solutions, it is crucial for most
of the other simplification and blocking approaches. The
table clearly highlights the lack of qualitative evaluations in
many of the web complexity solutions apart from very few
small-scale user studies.

3 RELATEDWORK
QLUE is a tool that can provide a rapid qualitative evaluation
of modified web pages with respect to their corresponding
reference versions. Despite that web complexity solutions
are rapidly emerging, existing tools can only help develop-
ers quantitatively evaluate their pages, but not qualitatively
in comparison to the existing original pages. For instance,
Lighthouse [5] is an automated tool that runs in Chrome
DevTools to generate a report on the evaluation of a given
web page and how to improve its timing performance met-
rics such as Speed Index and Time-to-interactive. Similarly,
Browsertime [26] tool collects performance timing metrics of
a given web page, and records a video of the browser screen
used to calculate visual timing metrics (such as Speed Index).

A common framework that assists web developers in creat-
ing light-weight mobile pages is Google’s AcceleratedMobile

Pages (AMP) [19]. To compare the performance of an AMP
to the corresponding non-AMP page, the developer must
ensure that both pages have similar content and functional-
ity [20], and there is no way today to automate this compar-
ison. Instead of creating new accelerated mobile pages, web
developers commonly seek to learn from and reuse features
in existing web pages. In Ply [27, 28], the authors proposed
a CSS inspection tool to assist web developers in replicating
visual features of existing complex pages. To automatically
identify irrelevant properties of elements in these pages, Ply
disables a given property, captures a screenshot of the result-
ing web page, and compares it to a reference screenshot with
all properties enabled. It uses a simple pixel-level screen-
shot comparison to compute the visual regression between
screenshots and remove the property with no visual impact.
However, unlike QLUE, the main limitation of Ply is that
it cannot consider interactive features that are driven by
JavaScript.

Other existing developer tools [13, 16, 22, 29, 38] focus on
debugging and tracking code snippets in web pages, or repro-
ducing interactive content from existing pages. For instance,
Chrome Developer Tools are extended in Unravel [22] to
support reverse engineering of complex web pages, by en-
abling developers to track and visualize both: page changes
and JavaScript function calls. On the other hand, Fusion [38]
allows developers to borrow functionalities from existing
web pages, by extracting components from these pages and
turning them into self-contained widgets that can be em-
bedded into other pages. In [13], a simple markup language
is combined with reactive components to reduce the effort
needed to produce interactive documents. In comparison to
QLUE, these existing developer tools assume the intention of
reusing content on different web pages, while QLUE aims to
assist developers who intended to provide alternative pages
that accommodate the needs of users relying on handheld
mobile devices to access the web.

4 THE DESIGN OF QLUE
To evaluate the quality of web pages created by different
web complexity solutions in comparison to their original
counter part, we developed QLUE, a computer vision tool
that assesses the content completeness and the functionality
as two separate scoring metrics (0-100%). As explained ear-
lier, most of today’s state-of-the-art solutions that tackle the
simplification of web pages either rely on small-scale user
studies to evaluate the qualitative aspects of their created
pages, or simply ignore the qualitative evaluations and focus
more on other quantitative metrics. The QLUE design is in-
spired by how humans evaluate the quality of web pages in
user studies. When it comes to evaluating the content sim-
ilarity, QLUE tries to emulate the human perception when



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi

Table 1: Evaluation metrics used in web complexity state-of-the-art solutions

Solution Quantitative Metrics Qualitative Metrics
SpeedReader [18] Data Size, Memory Consumption, Page Load Time Not evaluated

WProf [36] Page Load Time Not evaluated
Shandian [37] Page Load Time, Page Size Not evaluated
Polaris [31] Page Load Time Not evaluated
Vroom [34] Page Load Time, Above the fold Time, SpeedIndex Not evaluated

Prophecy [32] Page Load Time, Bandwidth, Energy, SpeedIndex, ReadyIndex Not evalauted
Flywheel [9] Page Load Time, Time to first byte, Time to first paint, Page Size Not required

BrowseLite [25] Bandwidth Saving, Page Size, Speed Index User Study, Visual Completeness
JSCleaner [12] Page Load Time User Study
Web Medic [30] Memory consumption User Study

comparing the web pages, by searching for missing compo-
nents, and penalizing the score based on the importance of
these components. To this end, QLUE approximates the im-
portance of a component by measuring the area it occupies
in the page—emulating humans behavior penalizing large
missing components, while often overlooking small missing
ones. On the other, when evaluating the functional complete-
ness, QLUE utilizes a computer bot that interacts with all
the functional elements of the page and assesses the missing
functionality. In comparison to a human evaluator, the bot
automatically extracts a complete list of event-listeners and
then triggers each one individually, some of these events
might not be easily identifiable (i.e., missed) by a human
evaluator—since some are hidden under a number of consec-
utive dependant events.
QLUE compares a version of a page against its original

counterpart, we refer to these pages as the Modified page
and the Reference page, respectively. As stated earlier, QLUE
performs two different comparisons of the modified page
against its reference, these are: content completeness, which
we technically refer to as Structural Similarity, and the degree
to which the interactivity and the functional features are
retained, which we refer to as Functional Similarity.

4.1 Structural Similarity
The structural similarity aims to compute a score on how con-
tent from the reference page is retained in the modified one.
In order to compute the score, the structural similarity goes
over various processes, these are: i) screenshots generation
and processing, ii) components extraction, iii) components
matching, and iv) computing the score. Figure 1 shows a
high-level architecture of QLUE’s structural similarity.

4.1.1 Screenshots Generation and Processing. To compute
the structural similarity (i.e., content completeness), QLUE
first requires to generate a screenshot for both rendered
pages–the modified and the reference. A rendered page is
created by the browser after the page is requested and its

HTML representation is processed by the browser, which
in turn requests and display all the page embedded objects
(such as images, videos, and etc.). To assess the full page con-
tent completeness, the screenshots of the entire pages are
required for the comparison. More specifically, the screen-
shots are generated while scrolling down till the end of the
page. In other words, a screenshot not only considers what
is usually refereed to as above-the-fold (which is the part
of the page that is visible on the screen), but also the part
that appears when scrolling down. These screenshots are
represented as images in the form of 3D arrays: the first two
dimensions are the X and Y coordinates for the pixels of the
image and the 3rd dimension is the color space (the RGB
values of the pixel). In order to find the interconnectedness
of the pixels, we transformed this 3D array image into a 2D
binary array (with zeros and ones), where the ones represent
the presence of the components and the zeros represent their
absence. In other words, we transform the screenshot into a
black and white representation for the sake of speeding up
the computation.

After generating the full page screenshots for both the ref-
erence page and the modified page, QLUE identifies the back-
ground color of the page by reading the Document Object
Model (DOM) property document.body.style.backgroundColor
and comparing it with the most frequent pixel-color on the
page, given that sometimes web developers add an additional
gradient background or an image background that overlays
the background color. If different, the image is run through
OpenCV’s adaptive threshold filter. Otherwise, the image
is run through a more efficient custom threshold filter that
we built, which replaces background pixels with zeros and
foreground pixels with ones. The reason why we do not
use OpenCV’s threshold filter in case the background color
matches the most frequent pixel-color is that it breaks the
images into several sub-components, which in turn increases
the time complexity of the process. In other words, if there
is an image that contains several objects, instead of taking



QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

Components ExtractionScreenshot Generation
and Processing

Take a full page screenshots for both 
variants (reference and modified)

Find groups of connected pixels.

Dilate these groups of connected pixels.

Pass the array through
adaptive threshold 

filter.

Replace background pixels
in the array with 0 and 

foreground pixels with 1.

3 Dimensional 
image array

2 dimensional 
output array

Find disconnected pixel islands.

Crop each component from the 
original 3D array and save it.

1 1 1 1 1 1 1

1 1 1 1 2 1 1
1

1 1 1 1 2 1 1
3 1 1 1 1 1 1
3 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1
1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Components Matching

Search for the components from the 
reference page in the modified using 

Image Integrals.

Component score = 1

Component score is set by the average of 
OpenCV`s SSIM and mean squared error.

Component
found?

yes

no

Computing the Score

The score is calculated by taking an
average of components' scores 

weighted by their areas.

solid
colored

background
?

yes

no

Figure 1: Content Similarity Evaluation

the entire image as one component, OpenCV’s threshold
filter splits all objects inside the image into separate compo-
nents. Figure 2 shows an example comparing the outcome of
OpenCV’s adaptive threshold filter to the custom threshold
filter. It’s worth noting that for the purpose of identifying the
individual components and their locations within the page,
we do not require the individual objects within each image,
instead we care about the entire image as a whole, since the
modified version will either have the entire image or not
(there won’t be a case where only a subset of the image is
retained within the modified page).

4.1.2 Components Extraction. Now that the screenshots for
both the modified and the reference pages have been trans-
formed into separate 2D binary arrays, the next step for
QLUE is to split each array into a number of separate compo-
nents. The rational behind the components splitting comes
from the fact that a direct comparison using openCV’s Struc-
tural Similarity Index Measure (SSIM) of the two arrays (rep-
resenting the modified and the reference ones) might not
yield an accurate similarity score. This is because the modi-
fied version may lack a number of elements, which conse-
quently affects the position of other elements within the page

(given the dynamic nature of HTML that reorders the com-
ponents based on their relative positions). Figure 3 shows
two examples of how the SSIM fails in providing an accurate
score. In the first example, due to a missing banner, the mod-
ified version of the page has shifted the subsequent elements
following the missing banner. As result, the SSIM method
reported a 67% similarity between the two pages (which is
clearly not accurate given that both pages look almost iden-
tical apart from the missing banner). On the other hand, the
second example shows two different screenshots of different
pages (where the modified version is not created from the
same reference page), however the SSIM method reported a
similarity score of 90% even though that the elements within
the pages are completely different (due to the fact that there
are many background pixels that match between the two
pages).

To overcome the above limitation, QLUE breaks the pages
into several components while eliminating the background
pixels. The score can then be computed by matching these
components individually (discussed later in Section 4.1.3). To
identify the individual components, QLUE searches within
the 2D binary array for groups of connected pixels (i.e., ad-
jacent 1s in the array without 0s in between), we refer to



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi

(a) Original screenshot (b) OpenCV’s adaptive threshold filter (c) Custom threshold filter

Figure 2: An Example showing the impact of two different threshold filters on the same original screenshot. (a)
shows the original screenshot, (b) shows the OpenCV’s threshold filter which highlights that each image is split
into multiple smaller components, and (c) shows the custom QLUE threshold filter where each image is a stan-
dalone component.

these groups as islands. These islands can consist of big ele-
ments such as images, or small elements such as alphabets
in a sentence. For many of the small close-by islands, QLUE
merges them into a bigger island for two main reasons: i)
as the number of separate islands in the reference page in-
creases, the time to search for them in the modified page
will also increase, and b) islands that often repeat in a page
(such as alphabets) are required to form unique combination
(i.e., a sentence or a paragraph island) for easier matching
with the modified page. This unique combination of forming
larger islands is essential in making sure that the missing
components in the modified page are correctly penalised and
not falsely matched due to the presence of repetitive smaller
islands.
To join the small islands together, QLUE uses OpenCV’s

dilation function to "dilate" these pixel islands. Pixel Dila-
tion is a morphological operation that traverses through the
binary array and replaces all the 0s with 1s if one of the
neighboring pixels is a 1. Figure 4 shows an example of the
dilation process over a textual paragraph. The bounds of
the neighborhood can be changed by modifying the kernel
size. For example for a kernel size of (2, 2) it will check the
2x2 squares around the pixel in question. A larger kernel
size would result in merging farther islands together. For
QLUE, it is crucial to have a kernel size that captures islands
correctly—we don’t want the entire screenshot to be a single
island, nor every alphabet to be an island on its own (see
Figure 5 on the impact of the kernel size). The initial kernel
size values are set by multiplying a constant number with
the ratio of the foreground and the background pixels in both
the x and y directions. This constant is different depending

on the type of the web page (mobile or desktop), as well as
the display screen resolution.

The initial value, 𝐾 of the kernel is defined as:

𝐾 =
(
𝐾𝑥 , 𝐾𝑦

)
=

{
𝐾𝑥 = 𝐶

𝑛𝑢𝑚𝑅𝑜𝑤𝑠

∑numRows
𝑖=1

𝛿𝑖
𝛾𝑖+𝛿𝑖

𝐾𝑦 = 𝐶
𝑛𝑢𝑚𝐶𝑜𝑙𝑠

∑numCols
𝑖=1

𝛿𝑖
𝛾𝑖+𝛿𝑖

(1)

where 𝛿 is the number of pixels with value 0 at the 𝑖𝑡ℎ row
or column (depending on whether we are computing 𝑘𝑥 or
𝑘𝑦), and𝛾 is the number of pixels with value 1 at the 𝑖𝑡ℎ row or
column (depending on whether we are computing 𝑘𝑥 or 𝑘𝑦),
and C is a constant value that inflates the probability of zero
pixel into a larger dilation factor, given that the probability is
between 0 and 1. C is chosen to be 15, which intuitivelymeans
that when the probability of the zero pixel per screenshot is
low (i.e., the page is dense in components), the kernel size
would be roughly around 1 to 2 pixels. On the other-hand,
when the probability of the zero pixel is high (i.e., the page
is sparse in components), the kernel size would need to be a
higher value not exceeding 15 pixels.
After the initial value of 𝐾 is computed for a given page

using the above formula, QLUE dilates the pixel of the screen-
shot and computes the number of islands (i.e., disconnected
components). The number of components is computed by
using openCV’s connected components method (see Fig-
ure 1 green process, where the pixels of each connected
component are labeled with a unique number from 1 to N).
Based on analysing 100 modern web pages, we have discov-
ered that on average the number of components per page
varies in area between 4000 and 12000 pixels. To verify the
initial value of our kernel 𝐾 , we compare the number of



QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

Reference Page .PEJmFE�1BHF Reference Page .PEJmFE�1BHF

(a) 61% SSIM similarity score, while intuitively a higher score is
expected given that the pages look very similar

Reference Page .PEJmFE�1BHF Reference Page .PEJmFE�1BHF

(b) 69% SSIM similarity score, while intuitively a score of 0% is
expected given that the pages are completely different

Figure 3: An example highlighting two failure cases of OpenCV’s SSIM in providing an accurate similarity score
due to either missing certain elements that causes the rest of the page elements to shift (as in a), or due to the fact
that OpenCV’s SSIM considers the background pixels when computing the score (as in b).

Figure 4: An example of the dilation process applied
on a textual paragraph. Note that the intermediary fig-
ure is only displayed for illustrative purposes, to high-
light the pixels that are being dilated (shown in green).

components computed earlier with the theoretical upper and
lower bounds, which are compute by dividing the screen-
shot area by both bounds of the average component area.
That is ⌊(𝑥 × 𝑦)/12000⌋ and ⌊(𝑥 × 𝑦)/4000⌋, where x and y
are the width and height of the 2D array. If the number of
components is outside this range, the kernel size will be au-
tomatically tweaked depending on whether the number of
components is lower or higher than the range. In case it is
lower it suggests that the kernel size is larger than required
and should be reduced, whereas it should be increased if
the number of components exceeds the upper range (which
means that the kernel size is smaller than required). This
kernel size is automatically increase/decreased by 1 pixel in
each iteration and the dilation process is performed again
until the number of components is within the range.

Once the number of components is computed and within
the range, the bounding box of each component is computed
by finding the minimum and maximum x and y coordinates
across all pixels of that component, i.e.
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛), (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 ), (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ).

QLUE stores the coordinates of each component, and uses
them to extract the components images by cropping the
original 3D array at the same coordinates of the bounding
boxes. Figure 6 shows how the bounding boxes overlay over
both the reference and the modified original screenshots.

4.1.3 Components Matching. Now that QLUE has extracted
all the individual components from both the reference and
the modified pages (in the form of images cropped from the
3D arrays of the reference and modified screenshots), its
time to match these components in order to identify which
ones are missing in the modified page. To achieve the latter,
QLUE utilizes an image search algorithm called the image
integrals [14] to match each component in the reference page
with a component in the modified one. For all the success-
fully matched components, QLUE assigns a full similarity
score of 100% for that component (Figure 6 shows an exam-
ple of the matched components, highlighted by the green
bounded-boxes). For the rest of the components that are not
found in the modified page, QLUE uses OpenCV’s similarity
index and the mean squared error for each of the unmatched
components from the reference page against each similarly-
sized unmatched components from the modified page. Then,
for a given unmatched component in the reference page, the
component from the modified page with the highest score
is considered a partial match with the score obtained from
OpenCV’s similarity index which ranges between 0 - 100%.
For the reference page components with no matches, i.e.,
when QLUE runs out of components to match in the mod-
ified page, we consider a score of 0% for each of them (see
Figure 6 for an example of such unmatched components



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi

Kernel size (0,0) Kernel size (3,3) Kernel size (8,8) Kernel size (15,15)
Components: 54 Components: 16 Components: 6 Components: 1

Figure 5: The impact of different kernel size on the pixels dilation process. When a small kernel size is used, e.g.,
(0,0), this results in havingmany small components (each alphabet is considered as an individual component). On
the other-hand, when a large kernel size is used, e.g., (15,15), the entire page is represented by a single component.
In this example, kernel size (8,8) shows the best components’ splitting results.

Reference Page Modified Page

Figure 6: An example of QLUE’s components matching process, where green bounded-boxes highlight the fully
matched components between the two pages, and the red bounded-boxes highlight themissing components from
the modified page. Note that regardless of the actual components position, QLUE can still easily match them. For
example, the ad displayed at the bottom of the page has been left-aligned in the modified page in comparison to
the center alignment in the reference page. Additionally, the more item at the end of the navigation bar within
the modified page has been shifted below it’s actual position in the reference page.

highlighted by the red bounded-boxes). Upon matching com-
pletion, the result would be in the form of a list of matched
components each with an individual score between 0 - 100%.

4.1.4 Computing the Final Score. From the previous step,
QLUE computed an individual score for each component in

the reference page. Now, these scores must be combined into
a unique score that represents the overall page similarity.
One naive approach to compute the overall similarity score
is to simply average over all of the individual components’
scores. However, such an approach might not yield a correct



QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

score that represents the content completeness between the
two pages. For instance, if one of the components that has
relatively a low score turned out to be a small missing icon
or thumbnail within the page, the weight of this element
would unfairly penalize the overall similarity score given
that when the same task is given to humans, they generally
tend to penalize for missing large elements, whereas they
might forgive or even overlook smaller missing elements
within the page. Inspired by this, QLUE averages the scores
weighing each element score by its relative area. That is,
the scores are multiplied by the area of each component
and divided by the overall area of all components. This way,
each component contributes to the final score in a proportion
relative to its area. Consequently, smaller components would
have marginal impact on the similarity score. This gives a
Structural Similarity Score between 0 and 100%, where a
score of 100% affirms that the pages are identical (lack of
missing content in the modified page).

Structural Similarity Score =
Σ𝐶𝑖=0𝑎𝑖 × 𝑠𝑖
Σ𝐶
𝑖=0𝑎𝑖

(2)

where C is the number of components, 𝑠𝑖 is the score of
the component i, and 𝑎𝑖 is the area of component i.

4.1.5 Walk-through example. This subsection illustrates a
step-by-step walk-through example of the QLUE’s structural
similarity evaluation. For this example, we have chosen the
Wikipedia mobile page due to its simplicity to highlight the
individual processes.

• Step #1 Generating Screenshots: First, QLUE obtains
a screenshots for both the reference and the modified
pages, that is the 3D image array (Figure 7a)

• Step #2 Applying threshold filter: Next, QLUE applies
the threshold filter, as seen in Figure 7b, to convert the
3D image array into a 2D binary array (representing
black and white pixels). In this example, QLUE uses
the custom threshold method to convert the image
since the background color of the page taken from the
document object model attributes matches the most
frequently used pixel in the page (that is the white
color pixel).

• Step #3 Pixels dilation: Once the 2D binary array is
created, QLUE uses the dilation technique explained
earlier to build the islands’ representation of the con-
nected pixels so as to determine and separate all the
individual components within the page. As can be
seen in Figure 7c, each of the Wikipedia components
is grouped into a single island, for example each of the
sections around the Wikipedia globe (at the center of
the page) forms an independent component, merging

both the title and the underlying text, e.g., merging
the “English” title with the text underneath it.

• Step #4Determining the components and their bounding-
boxes: QLUE uses openCV’s connected components
methods, each of the pixels islands is identified, and
each of its bounding-boxes is determined as seen by
the red colored boxes in Figure 7d.

• Step #5 Cropping components from the original screen-
shots: applying the same bounding-boxes coordinates
obtained in the previous step, QLUE crops the compo-
nents’ images from the original screenshots as seen in
Figure 7e. These images would serve as the basis for
components matching between both versions of the
page.

• Step #6 Matching components across the two versions:
QLUE iterates over all identified components in the
reference page and searches for possible matches in
the modified page. Figure 7g shows three different cat-
egories of components: a) components that are fully
matched with a score of 100% (highlighted in green),
such as the Wikipedia globe, the Wikipedia title, etc.,
b) partially matched components (highlighted in blue).
Note that in this example we only have one such com-
ponent where the text associated with the logo is
shifted from its original location in the reference page
(leading to a similarity score of 94%), and c) missing
components (highlighted in red), these components
were not present in the modified page, hence their
score is set to 0%.

• Step #7 Computing the final score: this step simply
averages the scores of all the components present in
the reference page, while weighing each component’s
score proportional to its area. As such, the overall page
structural similarity score is 89%.

4.2 Functional Similarity
Functional similarity refers to the assessment of the modified
page in comparison to the reference page in terms of retain-
ing the functional elements and their proper interactivity
features. For example, a drop-down interactive menu in a
reference page should: a) be present in the corresponding
modified page and b) its functionality is preserved in the
modified page. To compute the functional similarity score,
the user interactivity events are emulated, through an inter-
action bot, by extracting all of the event listeners from both
the reference and the modified pages, triggering each of the
events, and taking screenshot whenever an event is triggered.
Then, the functional similarity score is computed based on
the retained functionality in the modified page with respect
to the reference page.



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi

(a) Step #1
Generating
Screenshots

(b) Step #2
Applying

threshold filter
(the custom filter

in this case)

(c) Step #3 Pixels
dilation

(d) Step #4
Determining the
components and

their
bounding-boxes

(e) Step #5
Cropping

components
(highlighted in
red) from the

screenshot of the
reference page

(f) The final
outcome of the
above steps (Step

#1 - Step #5)
applied on the
modified page

Components 100% Matched Components 
Partially Matched

Original Page

Modified Page

Matching Score: 94%

Components 
Not Matched

(g) Step #6 Matching components obtained in (e)
and (f), showing three categories of matched
components: 100% matched (green), partially

matched (blue), missing (red)

Figure 7: A walk-though step-by-step example to eval-
uate the structural similarity. Note that sub-figures a-
d show the steps applied on the reference page only,
given that the process is the same for the modified
page.

4.2.1 Emulating User Interactivity. To emulate the user in-
teractivity with a given web page, we leverage the browser’s
built-in functionality to identify all the event listeners in
the reference page, and map them to their corresponding
elements. These events can come in various forms including
but not limited to: mousedown, mouseup, mouseover, mouse-
out, keydown, keypress, keyup, dblclick, drag, dragstart, and
dragend.

Elements are identified using their XPaths that facilitates
navigating through a given web page and accessing all ele-
ments and their attributes to construct an event-dependency
graph, such that a group of dependent events can be trig-
gered in a given order. For example, an event that closes a
menu cannot be triggered unless the open event correspond-
ing to that menu is triggered first. An XPath of an element is
constructed using the nearest parent with an "id" or "class"
attribute as the root. In an HTML document representing a
given web page, elements are structured internally using dif-
ferent < 𝑑𝑖𝑣 > tags. Each < 𝑑𝑖𝑣 > tag has a unique "id", and
can reference an pre-defined "class" of attributes from the
accompanying Cascading Styling Sheets (CSS) files, which
set the different visual attributes for that given < 𝑑𝑖𝑣 > tag.
Position-based indexing is then used to identify descendants.
For elements with no ancestor with an "id" or "class" attribute,
the "body" element is used as the root, while position-based
indexing is initiated from the body. Using XPath element
identification allows us to identify elements across reloads.
When the events of a given reference page are identified

and mapped to the corresponding page elements, they are
traversed in a depth-first order. For each element, an auto-
mated browser is used to trigger each of the events associated
with that element. In general, triggering an event leads to
changes in the page appearance. Figure 8 shows a sample
snapshot of a hover event over a drop-down menu.

In order to assess if the functionality is retained, a screen-
shot is taken and stored whenever an event is triggered, Fig-
ure 9 shows examples of such events. However, any screen-
shot that renders no visible change, in comparison to the
master screenshot of the page before any event is triggered,
is not stored in order to increase the efficiency of computing
the functional similarity score. This is confirmed by a pixel-
by-pixel comparison, such that an event that does not change
the appearance of the page (when triggered) is dropped from
the list of events. The final set of event listeners identified
in the reference page along with their screenshots showing
the impact of each on the page are then used to assess the
retained functionality in the modified page. For these screen-
shots, QLUE does not save the entire screenshot area but
rather only the area that shows a visual change in compari-
son to themaster screenshots. This is achieved by subtracting
both pixel by pixel and eliminating the zero value pixels (i.e.,
the ones that were identical). QLUE searches for each of
these event listeners in the modified page, and triggers each
of them to generate and store similar screenshots from the
modified page for each of those events. Similar to above,
only the part of the screenshot that shows a visible change
is saved.

4.2.2 Computing the Score. QLUE iterates over all screen-
shots generated from the reference page that showed a visual



QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

(a) The screenshot taken
before any event is triggered

(b) The screenshot taken after
a hover event is triggered

(c) The result of subtracting
both images in (a) and (b)

(d) Identified affected region
based on the triggered event

Figure 8: An example of an interactive functional el-
ement, corresponding to a hover event-listener that
triggers a drop-down menu. The figure also shows
how QLUE eliminates the unaffected portions of the
page by subtracting the screenshots (sub-figure (c) is
the result of subtracting both images in sub-figure (c)
and (a)). This is done to effectively only compute the
score for the region that showed a visible change (high-
lighted by the red bounding-box)

change in the page appearance upon triggering an event, and
compares each to its counterpart screenshot taken from the
modified page. QLUE has two different approaches when
comparing these screenshots: a) using the same structural
similarity approach taken earlier for the content complete-
ness (see Section 4.1, or b) simply using openCV’s SSIM
method for a quick similarity score computation. The choice
between the two is left for the QLUE user, since this strikes a
trade-off between accurately computing the score (option a),
and the time complexity of computing the functional score
(where option b is tentatively faster than option a). As shown
earlier, SSIM might not be accurate when it comes to measur-
ing similarity scores especially when missing elements can
lead to the reordering of page elements (see examples shown
in Figure 3). However, in the case of a functional element
screenshots, the possibility of having a missing element is
rare, given the fact that an event element functionality is ei-
ther fully retained or completelymissing. An event that exists
in the reference page and is not found in the corresponding
modified page is given a score of zero. On the other-hand,
for a matched event, a score is between zero and one is com-
puted to assess the similarity of the screenshot taken when
that event is triggered in the modified page with respect to
the corresponding screenshot taken when the same event

is triggered in the reference page (using image subtraction).
The average of the scores given to each of the event listeners
is computed to represent the overall functional similarity
score of the modified page in comparison to the associated
reference page. The functions of a given page are considered
equally important and consequently, no weights are given
to different types of event listeners (unlike the case of the
structural similarity score).

(a) Reference page (no
triggered events )

(b) Search bar click
event

(c) Options button
clicked

(d) “Sort” button
clicked

(e) “New” button
clicked

(f) “View” button
clicked page

(g) “Login” button
clicked

(h) External page
when a headline

thumbnail is clicked

(i) “Newsfeed” item
clicked

Figure 9: Examples of QLUE’s interaction bot trigger-
ing different types of event listeners. Red boxes high-
light the impacted area of the page when each of the
events is triggered.

5 IMPLEMENTATION
QLUE provides a standalone implementation, where the
users can locally install the tool on their machine. The im-
plementation is split into two modules: structural similarity,
and functional similarity. These modules are all available



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi

on GitHub as open source libraries2. QLUE’s modules are
combinations of both Python and Java code, relying on a
number of openCV’s functions.

5.1 Structural Similarity Implementation
For the structural similarity implementation, QLUE provides
a flexible approach with three different modes of operation
depending on the usage scenario, these are:

• Proxy mode: here, the users configure QLUE with two
different proxies, one serving the reference pages, while
the other serves the modified pages. The use of prox-
ies is a common approach for many of the web ac-
celeration solutions, where the solutions’ developers
cache cloned versions of these pages to guarantee re-
producible results.

• URL mode: in this mode, QLUE can be used to evaluate
live web pages against each other without the need for
caching. A usage example of this mode can be evaluat-
ing live production web pages where web developers
host two different live versions of the same page.

• Screenshots mode: this mode is used to directly provide
the pages screenshots (i.e., reference and modified). In
contrast to the above two approaches, where QLUE
generates the screenshots internally.

For the screenshot generation, QLUE uses SeleniumChrome
Web-driver [23], where depending on the need of the users,
their solution, and their selected mode, QLUE can be config-
ured to either emulate a desktop or a mobile phone chrome
browser when generating the screenshots (valid for the first
two modes of operation). It also runs as a headless browser,
and automatically scrolls through the entire page in an itera-
tive manner while waiting in each iteration for the content
to be fully displayed. The maximum number of iterations is
configurable (and is set to 20 iterations by default). This num-
ber is introduced, given that certain web pages can virtually
display endless content when scrolling.

Following the screenshot generation, QLUE automatically,
without the intervention of the user, passes these screenshots
to the following subsequent processes: pixel dilation, com-
ponents extraction, components matching, and computing
the final score. These are all implemented in Python using
openCV [11], Scikit-Image [35], and numPy [21].

5.2 Functional Similarity Implementation
The functional similarity implementation has two main mod-
ules: an interactivity bot, and a score generation module. The
interactivity bot emulates user actions on the web page by
first extracting all the event-listeners from the DOM struc-
ture of the page. Given that all of the pages interactivity/

2The link is omitted so as to respect the double-blind review policy.

functionality are triggered using an event-listener. The in-
teractivity bot is implemented in Java, relying internally on
Selenium functions. The bot can be configured to operate
using two different modes (similar to the first two modes
of the structural similarity mentioned above): Proxy mode,
and URL mode. The score generation module is implemented
in Python. The initial comparison to see if the events ren-
dered any change, image subtraction and image matching
are performed using openCV [11] and Scikit-Image [35].

6 EVALUATIONS
6.1 User Study
To evaluate the effectiveness of QLUE on how well it em-
ulates the human perception when comparing web pages
against each other, we conducted a user study with 30 par-
ticipants to compare 100 modified web pages3 with respect
to their original pages. We split the 100 pages across the par-
ticipants, and ask each to evaluate 20 unique pages. In total
each page was evaluated by 6 participants. The participants
were recruited from an international University campus, and
were trained to manually evaluate the quality of the pages
with respect to their original counterpart pages in terms of
structural similarity (i.e., content completeness) and their
retained functionality. We met with each participant online
to explain the purpose of the evaluation and how to use the
evaluation tool.

6.1.1 Evaluation Tool and Metrics. We designed an evalu-
ation tool that automates the comparison process for the
human evaluators. That is, the tool automatically picks a
URL from the list of URLs the evaluator is supposed to as-
sess, and displays side-by-side both versions of the page (the
reference and the modified) by opening two instances of
the Chrome browser. Figure 10 shows the evaluation tool
interface with an example web page, BBC.com.

The left window connects to a proxy that servers the ref-
erence pages, and the right window connects to a different
proxy that serves the modified pages. The reason behind
using proxy servers is to serve the same cloned versions of
the pages for all users (to avoid the page regular updates
over time). The evaluation tool randomly selects a web page
for evaluation. The user is asked to compare the two pages
and fill in a form with the following considerations:

• Content Similarity score: where the evaluator is re-
quired to rate her/his perceived content similarity of
the modified page in comparison to the reference page
using a slider with a 0-to-100% scale. A score of 0% is

3These pages were created using one of the state-of-the-art web complexity
solutions. We omitted the name of the solution so as not to violate the
double-blind policy.



QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

Figure 10: The Evaluation Tool showing an example web page to evaluate (BBC.com)

interpreted as the two pages being completely differ-
ent, whereas a score of 100% means that the two pages
are identical. A score between 0% and 100% refers to a
partial similarity that matches the given score.

• Functional Similarity score: which refers to evalua-
tor perceived similarity score of the modified page
compared to the reference one from the functional
completeness perspective. Participants are asked to
rate their perceived functionality score in a 0-to-100%
scale by manually assessing the presence as well as the
operation of all functional elements found in the ref-
erence page within the modified one. These elements
includes but not limited to: interactive menus, nav-
igational elements, search bars, and image scrollers,
etc.

• Missing Content: where the participant is requested
to quantify the number of missing elements based on
their importance, categorised into 6 categories (see
Figure 10), within the modified page. Additionally, the
participants are also asked to describe why have they
split these elements into important vs. non-important
elements.

6.1.2 Evaluation Results. Figure 11 shows the histograms
and the cumulative distribution functions (CDFs) of the struc-
tural (Figure 11a) and the functional similarity (Figure 11b)
of the modified pages in comparison to the corresponding
reference pages for both the user study and QLUE.

The structural similarity results, shown in Figure 11a, com-
pares the automated QLUE results highlighted by the light
blue curve in comparison to the manual human evaluations
highlighted by the dark blue curve. For the user study results,
it can been seen that for 90% of the pages, the human eval-
uators gave a score ≥ 90%, whereas for the rest of the 10%
of the pages, almost all (with the exception of two outliers)
have a score ≥ 80%. In comparison, QLUE results show more
conservative scores, where 75% of the pages have a score of
≥ 90%, while the rest (apart from 3 outliers) scores between
75%-90%. This highlights that QLUE is less forgiving than
the human evaluators, evident by the smooth and gradual
increase of the scores. This can be explained by the fact that
QLUE systematic rules in penalizing the score for every miss-
ing component no matter how small it is, or how important
is the component to the page main content. In summary,
QLUE’s structural similarity score can be considered as the
lower bound of the page content evaluation.

Similar observations to the above can be viewed in QLUE’s
functional comparison shown in Figure 11b. That is, QLUE
scores follows a similar trend compared to the scores given
by human evaluators with slightly lower values. This can be
explained by the fact that human evaluators tend to over-
look minute differences, and that they are more forgiving
in their assessment when major elements in the two pages
are matching. In addition, human evaluators tend to miss
evaluating certain functional elements, especially when they
are triggered after triggering a series of previous dependant
events.



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi

0 20 40 60 80 100
Similarity Score (%)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

QLUE evaluation
Human evaluation

0 20 40 60 80 100
Similarity Score (%)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

QLUE evaluation
Human evaluation

0 50 100 150 200
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Threshold filter
Components extraction
Components matching
Structural similarity total time

50 75 100 125 150 175 200 225
Number of Components

0

50

100

150

200

Ti
m

e 
(s

)

Threshold filter
Components extraction
Components matching
Structural similarity total time

50 60 70 80 90 100
Similarity Score (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

50 60 70 80 90 100
Similarity Score (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) Structural similarity

0 20 40 60 80 100
Similarity Score (%)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

QLUE evaluation
Human evaluation

0 20 40 60 80 100
Similarity Score (%)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

QLUE evaluation
Human evaluation

0 50 100 150 200
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Threshold filter
Components extraction
Components matching
Structural similarity total time

50 75 100 125 150 175 200 225
Number of Components

0

50

100

150

200

Ti
m

e 
(s

)

Threshold filter
Components extraction
Components matching
Structural similarity total time

50 60 70 80 90 100
Similarity Score (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

50 60 70 80 90 100
Similarity Score (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) Functional similarity

Figure 11: QLUE vs. human evaluation results

6.1.3 How QLUE compares to human evaluators. In Figure
12, we illustrate three examples on how the structural simi-
larity scores computed by QLUE are comparable to the scores
given by the human evaluators.
In Figure 12a, we show that QLUE computes approxi-

mately the same score given by the human evaluators. The
2% reduction in QLUE’s score reflects the two missing menu
elements (highlighted in red at the upper right corner of
the reference page). QLUE identifies exactly the same miss-
ing images in the reference page as the human evaluators.
Similarly, Figure 12b shows that QLUE identifies the same
missing elements as the human evaluators, however, QLUE
penalize the similarity score more accurately, since the size
of the missing images spans a large area in the reference

page. The reason why human evaluators gave a higher score
than QLUE is that they attributed the missing images to ad-
vertisements (reported as non-important missing elements
in the form shown in Figures 10). We believe that it is cru-
cial to consider all missing elements equally regardless of
their perceived category (e.g., advertisements) when mea-
suring the qualitative score of the pages modified by web
complexity solutions. This is because QLUE aims at provid-
ing a unified qualitative scoring metric to compare different
web complexity solutions in a uniform and unbiased manner.
Finally, Figure 12c shows the comparison of the BBC.com
web page. Here, QLUE reports a similarity score that is 10%
lower than the score given by the human evaluators due to
the fact that it correctly identifies many missing navigation
elements at the end of the page—that were overlooked by
the human evaluators. This example highlights how easy it
is for human evaluators to overlook many elements because
it is very hard to recognize them when they have similar
structural appearance.

6.2 Time Complexity
To evaluate the performance of QLUE in terms of time com-
plexity, we compared the different timing metrics on per-
process basis, using the same set of 100 pages considered in
the user study. These metrics represent the timings of the
most time-consuming processes in computing the structural
similarity score: threshold filter, components extraction, com-
ponents matching, and the total required time (structural
similarity total time). In Figure 13a, we show the CDFs of
the QLUE’s timing metrics measured in seconds, whereas in
Figure 13b, we show these timing metrics as a function of
the number of components in a web page. Figure 13a clearly
shows that the threshold filter does not impact the overall
time given that it is completed in a matter of milliseconds
(hence the straight blue line in the figure), in comparison to
the maximum total time of around 220 seconds in the worse
case scenario within the 100 evaluated pages. The Figure also
shows that components matching (highlighted in orange) is
the most time-consuming process in computing the struc-
tural similarity score—taking around a minute at the median.
In contrast, the components extraction process (highlighted
in green) is relatively quick, with a maximum time of less
than a minutes (i.e., around 49 seconds).
To better understand the relationship between the page

complexity in terms of the number of components it contains
and the timings metrics, we plotted these different timing
metrics as a function of the number of components in each
page, shown in Figure 13b. The results reveal that the rela-
tionship between QLUE’s overall time and the number of
components in the page follows a linear trend. Addition-
ally, for the threshold filter timings (highlighted in blue),



QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

(a) An example showing missing image thumbnails iden-
tified by both QLUE and the human evaluators, while
missing menu elements identified by QLUE are over-
looked by the human evaluators. Reported scores are 87%
and 85% for human evaluators and QLUE, respectively.

(b) An example showingmissing advertisements, all iden-
tified by both QLUE and the human evaluators. Addition-
ally, QLUE recognized amissing text that is missed by the
human evaluators. Reported scores are 91% and 64% for
human evaluators and QLUE, respectively.

(c) An example showing missing navigation-bar elements identified by both QLUE and the human evaluators, and miss-
ing navigation elements at the end of the page that are overlooked by the human evaluators. Reported scores are 97%
and 87% for human evaluators and QLUE, respectively.

Figure 12: Three examples showing QLUE in action, illustrating how it perceives structural similarity in compari-
son to humans. The left side in (a) and (b) shows the reference page,whereas the right side shows themodified page.
In (c), two screenshots are shown for both the reference and the modified page (to display the parts of BBC.com
with missing elements). Missing elements recognized by humans (in each modified page) are highlighted in the
corresponding reference page by the green rectangles. In contrast, missing elements recognized by QLUE in each
modified page are highlighted by the red rectangles in the corresponding reference page. We relied on the com-
ments provided by the human evaluators to identify the reported missing elements.

the results show that the total time required to perform the
threshold filter is almost constant (i.e., pixels dilation), that
is it does not depend on the number of components present
in a page.

Similarly, we also evaluated the time complexity of the
functional similarity in QLUE. Figure 14 shows the different
time complexity results for each of the functional similarity



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi0 20 40 60 80 100
Similarity Score (%)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

QLUE evaluation
Human evaluation

0 20 40 60 80 100
Similarity Score (%)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

QLUE evaluation
Human evaluation

0 50 100 150 200
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Threshold filter
Components extraction
Components matching
Structural similarity total time

50 75 100 125 150 175 200 225
Number of Components

0

50

100

150

200

Ti
m

e 
(s

)

Threshold filter
Components extraction
Components matching
Structural similarity total time

50 60 70 80 90 100
Similarity Score (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

50 60 70 80 90 100
Similarity Score (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(a) QLUE processing times

0 20 40 60 80 100
Similarity Score (%)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

QLUE evaluation
Human evaluation

0 20 40 60 80 100
Similarity Score (%)

0

10

20

30

40

50

60

70

Fr
eq

ue
nc

y

QLUE evaluation
Human evaluation

0 50 100 150 200
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Threshold filter
Components extraction
Components matching
Structural similarity total time

50 75 100 125 150 175 200 225
Number of Components

0

50

100

150

200

Ti
m

e 
(s

)

Threshold filter
Components extraction
Components matching
Structural similarity total time

50 60 70 80 90 100
Similarity Score (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

50 60 70 80 90 100
Similarity Score (%)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(b) QLUE processing times as a function of the number of
components

Figure 13: Structural similarity time complexity eval-
uation

sub-processes, namely: image subtraction, and image match-
ing. Figure 14a shows the CDFs of the time spent in each of
the aforementioned sub-processes, in addition to the over-
all time to compute the functional similarity score. It can
be observed that the image subtraction process (highlighted
by the green curve) is significantly faster than the image
matching (highlighted by the orange curve), where the im-
age subtraction process completes its execution in less than
a second at the median (with a maximum of 20 seconds in
the worst-case scenario). In contrast, the image matching

0 20 40 60 80 100 120
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Image subtraction
Image matching
Functional similarity total time 

(a) QLUE processing times

0 25 50 75 100 125 150 175
Total number of event listeners

0

20

40

60

80

100

120

Ti
m

e 
(s

)
Image subtraction
Image Matching
Functional similarity total time 

(b) QLUE processing times as a function of the number of event
listeners

Figure 14: Functional similarity time complexity eval-
uation

process has a median value of ~10 seconds, whereas in the
worst-case scenario it consumes around 105 seconds. Next,
Figure 14b shows the time spent in each sub-process as a
function of the number of event listeners present in a given
web page. The results show a linear relationship between
the timing metrics and the number of event listeners.



QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

7 DISCUSSIONS
This paper presented QLUE, a uniform approach to evaluate
the quality of modern web pages using computer vision, to
provide two different scoring metrics: content and functional
similarity. We show that these metrics can be computed uni-
formly in a systematic way, without discriminating against
any individual element, or increasing its weight. QLUE pro-
vides a novel solution to assess the preservation of the page
functionality by implementing an “interactivity bot”. The bot
is responsible for quantifying and triggering all of the page
event listeners (similar to a human evaluator).
We envision that QLUE can be used in two different sce-

narios: a) uniformly comparing the quality of different web
complexity solutions against each other as a standalone tool,
b) as a built-in module within some of the aforementioned so-
lutions that involve an iterative approach in simplifying web
pages, such as the one used in WebMedic [30]. To seek an
independent expert assessment of the latter usage scenario,
we reached out to the WebMedic authors. The following sub-
section is a reflection of the discussion we had with one of
the authors.

7.1 An Independent Expert Assessment on
QLUE’s Usage

Given the specificity of QLUE, and to independently assess
its usage potential, we sought the opinion of experts in the
field, mainly authors of existing state-of-the-art web com-
plexity solutions. Here, we present WebMedic’s authors [30]
point of view on QLUE’s usability, not only as a final scoring
mechanism of the overall page quality, but also as part of
WebMedic’s internal algorithm—to be used for measuring
the appearance metric of their page utility, instead of relying
on the simple pHash algorithm. We shared the conceptual
and technical details of QLUE with the authors offline and
then conducted an interview over zoom with one of them.
Below is a record of the interview transcript.

Question: Do you see the value of using QLUE as a module
within the WebMedic framework?

WebMedic author: “Given that QLUE can accurately iden-
tify the user-centric importance of web page components, and
by extension, the JavaScript that interacts with the given com-
ponents, QLUE can be integrated into WebMedic as system
module to automatically identify the key JavaScript functions
without the need of conducting user studies. As web pages
frequently evolve their content over time, it can be challeng-
ing to generalize the results of user-studies from one version
to another, and QLUE can fill the gap here by providing an
alternative to user-studies that unifies the scoring approach.”

Question: To what extent do you think that QLUE can
speedup simplifying web pages using WebMedic?

WebMedic author: “The previous version of WebMedic
relied on brute-force exploration through different versions of
a web page to generate memory/utility weights. If we had the
same framework, then yes I do see some value. It can also help
in speeding up the computations, since QLUE can replace the
measure of functionality/appearance change for this version.
We are moving away from the brute-force approach in the next
version and rely on a single run to profile memory/utility of
the web page. I see QLUE as the target metric that can help in
judging how good a certain cut was (especially from a user-
perspective). Though the value of using QLUE for generating
memory/utility profiles for the JS functions is not quite clear
to me, it definitely has value for translating the utility impact
to a user-perspective number.”

Question: How would the functional comparison in QLUE
improve WebMedic accuracy in avoiding page breakage?

WebMedic author: “There are two cases for page breakage:
a) a JavaScript function accessing some non-existent state, e.g.,
𝑓 𝑜𝑜 () defines array, 𝑏𝑎𝑟 () accesses the array, and if we cut
𝑓 𝑜𝑜 () without cutting 𝑏𝑎𝑟 () then the array accessed in 𝑏𝑎𝑟 ()
no longer exists, or b) an event listener attached to an element
(e.g., button) gets removed, thereby breaking the button. We
currently instrument JavaScript to track every event listener
added to the web page and can thereby track if an event listener
is missing. In this case QLUE can help, since WebMedic only
checks if the event listener exists or not. My only concern is that
it might be very time consuming to run for too many pages, due
to the fact that WebMedic creates JavaScript cuts at functional
level, and given that a web page might have a high number of
functions (i.e., 1000 functions or above). If we make a different
version of the web page for every missing function, we’ll have
a large number of page variants. It is definitely useful but
maybe beyond the initial operation of WebMedic, given that
we have to test on permutations of all the JavaScript functions.
However, we are on the evaluation phase of WebMedic after
creating the candidate pages, QLUE’s functional comparison
will be very helpful, given that QLUE takes it a step further
from just checking if the event listeners exist or not.”

7.2 Limitations
Here, we show two three corner cases that represent the
current limitations of QLUE. The first case occurswhen aweb
page displays different images upon re-load. For instance, a
web page that utilizes an image slider componentmay display
a different image every time the page is loaded (either in the
next visit or when the page is refreshed). In this case, there
is a high chance that the screenshot captured by QLUE for
the modified page would have a different image in the slider
component than the image shown on the corresponding



Capstone Seminar, Spring 2020, Abu Dhabi, UAE Waleed A. Hashmi

reference page. While this difference should not penalize the
structural similarity score, the current implementation of
QLUE does not recognize such cases, hence, the final score
will be unnecessarily impacted. An extended version of QLUE
can overcome this limitation by predicting components with
changeable content, such as image sliders and advertising
containers, where QLUE can take multiple screenshots of
the page in order to collect all possible images.

The second corner case that QLUE does not automatically
handle is a web page that uses a floating banner which always
appears as the user scrolls. This poses a challenge in the
screenshot generation process because the banner would
appear multiple times in the full screenshot captured for
the page, unless the user fixes the banner location to appear
only at the top of the page. This can manually be handled by
checking for such case andmodifying the CSS styling of these
banners before proceeding with the screenshot generation.
In our future work, we plan to extend QLUE screenshot
generation to automatically detect such floating elements
and modifying their CSS styling accordingly.
QLUE is capable of evaluating search bars functionality

in web pages, by filling the search bar with a search query
and triggering the search event. Given that the page would
return a valid visual response to the search query that QLUE
can compare between the two versions of the page (i.e., the
modified and the reference page). However, general web
forms, although similar in spirit to search bars, are not han-
dled by the current implementation of QLUE’s functional
comparison. The reason behind this is the fact that most of
the responses triggered by submitting a form do not neces-
sarily reveal whether the filled data were properly sent to
the server or not (apart from a simple thank you message
that is usually displayed as a default response).

8 CONCLUSION
In this paper, we presented QLUE, a tool that aims to provide
a unified approach for performing qualitative evaluations of
web pages using computer vision. A user study of 30 partici-
pants has shown that QLUE computes comparable similarity
scores to those provided by humans, and effectively assesses
the retainment of web pages functionality. Additionally, an
interview with the authors of one of the web complexity
solutions served as a usage scenario highlighting the usabil-
ity and benefits of QLUE as a qualitative evaluation tool in
today’s web.

9 ACKNOWLEDGMENTS
We would like to thank Usama Naseer and the rest of the
WebMedic authors for their valuable feedback and sugges-
tions serving as independent expert evaluators for QLUE
usability.

REFERENCES
[1] [n.d.]. Opera Mini for Android. https://www.opera.com/mobile/mini.

Accessed: 2021-01-11.
[2] 2018. SpeedReader: Fast and Private Reader Mode for the Web. https:

//brave.com/speed-reader/. Accessed: 2021-02-15.
[3] 2019. The age of digital interdependence. https://digitalcooperation.

org/wp-content/uploads/2019/06/DigitalCooperation-report-web-
FINAL-1.pdf. Accessed: 2020-10-04.

[4] 2020. Brave: the Privacy Preserving Browser. https://brave.com/.
Accessed: 2021-01-12.

[5] 2020. Lighthouse. https://developers.google.com/web/tools/lighthouse.
Accessed: 2020-03-26.

[6] 2020. The top 500 sites on the web. https://www.alexa.com/topsites
Accessed: 2020-01-03.

[7] Zainul Abi Din, Panagiotis Tigas, Samuel T King, and Benjamin
Livshits. 2020. PERCIVAL: Making in-browser perceptual ad block-
ing practical with deep learning. In 2020 USENIX Annual Technical
Conference (USENIX ATC 20). 387–400.

[8] AdBlock. 2009. Surf the web without annoying pop ups and ads.
https://getadblock.com/. Accessed: 2020-05-02.

[9] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan,
Ben Greenstein, Shane McDaniel, Michael Piatek, Colin Scott, Matt
Welsh, and Bolian Yin. 2015. Flywheel: Google’s data compression
proxy for the mobile web. In 12th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 15). 367–380.

[10] Mark Bauman and Ray Bonander. 2017. Advertisement blocker cir-
cumvention system. US Patent App. 15/166,217.

[11] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software
Tools (2000).

[12] Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian.
2020. JSCleaner: De-Cluttering Mobile Webpages Through JavaScript
Cleanup. In Proceedings of The Web Conference 2020. 763–773.

[13] Matthew Conlen and Jeffrey Heer. 2018. Idyll: A markup language for
authoring and publishing interactive articles on the web. In Proceedings
of the 31st Annual ACM Symposium on User Interface Software and
Technology. 977–989.

[14] Franklin C Crow. 1984. Summed-area tables for texture mapping. In
Proceedings of the 11th annual conference on Computer graphics and
interactive techniques. 207–212.

[15] Sybu Data. 2016. Sybu JavaScript Blocker – Google Chrome Extension.
https://sybu.co.za/wp/projects/js-blocker/. Accessed: 2020-05-02.

[16] Google Developers. 2019. Chrome DevTools. https://developers.google.
com/web/tools/chrome-devtools. Accessed: 2020-05-01.

[17] Facebook. 2015. Instant Articles | Facebook. https://instantarticles.fb.
com/ Accessed: 2020-03-21.

[18] Mohammad Ghasemisharif, Peter Snyder, Andrius Aucinas, and Ben-
jamin Livshits. 2019. Speedreader: Reader mode made fast and private.
In The World Wide Web Conference. 526–537.

[19] Google. 2019. AMP is a web component framework to easily create
user-first web experiences - amp.dev. https://amp.dev. Accessed:
2019-05-05.

[20] Google. 2021. AMP Reporting guide. https://support.google.com/
analytics/answer/9264222?hl=en. Accessed: 2021-04-04.

[21] Charles R. Harris, K. Jarrod Millman, St’efan J. van der Walt, Ralf
Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian
Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus,
Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Hal-
dane, Jaime Fern’andez del R’ıo, Mark Wiebe, Pearu Peterson, Pierre
G’erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020. Array
programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362.

https://www.opera.com/mobile/mini
https://brave.com/speed-reader/
https://brave.com/speed-reader/
https://digitalcooperation.org/wp-content/uploads/2019/06/DigitalCooperation-report-web-FINAL-1.pdf
https://digitalcooperation.org/wp-content/uploads/2019/06/DigitalCooperation-report-web-FINAL-1.pdf
https://digitalcooperation.org/wp-content/uploads/2019/06/DigitalCooperation-report-web-FINAL-1.pdf
https://brave.com/
https://developers.google.com/web/tools/lighthouse
https://www.alexa.com/topsites
https://getadblock.com/
https://sybu.co.za/wp/projects/js-blocker/
https://developers.google.com/web/tools/chrome-devtools
https://developers.google.com/web/tools/chrome-devtools
https://instantarticles.fb.com/
https://instantarticles.fb.com/
https://amp.dev
https://support.google.com/analytics/answer/9264222?hl=en
https://support.google.com/analytics/answer/9264222?hl=en


QLUE: A Computer Vision Tool for UniformQualitative Evaluation of Web Pages Capstone Seminar, Spring 2020, Abu Dhabi, UAE

https://doi.org/10.1038/s41586-020-2649-2
[22] Joshua Hibschman andHaoqi Zhang. 2015. Unravel: Rapid web applica-

tion reverse engineering via interaction recording, source tracing, and
library detection. In Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology. 270–279.

[23] Jason Huggins. 2019. SeleniumWebDriver. Browser Automation. https:
//www.seleniumhq.org/projects/webdriver/. Accessed: 2019-05-14.

[24] Cliqz International. 2009. Ghostery Makes the Web Cleaner, Faster
and Safer. https://www.ghostery.com/. Accessed: 2020-05-2.

[25] Conor Kelton, Matteo Varvello, Andrius Aucinas, and Benjamin
Livshits. 2021. Browselite: A Private Data Saving Solution for the
Web. arXiv preprint arXiv:2102.07864 (2021).

[26] Jonathan Lee, Tobias Lidskog, and Peter Hedenskog. 2020. Browser-
time. https://www.sitespeed.io/documentation/browsertime/
introduction/. Accessed: 2020-02-6.

[27] Sarah Lim, Joshua Hibschman, Haoqi Zhang, and Eleanor O’Rourke.
2018. Ply: A visual web inspector for learning from professional
webpages. In Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology. 991–1002.

[28] Sarah Lim, Joshua Hibschman, Haoqi Zhang, and Eleanor O’Rourke.
2018. Ply: A visual web inspector for learning from professional
webpages. In Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology. 991–1002.

[29] Mozilla and individual contributors. 2005. Firefox Developer Tools.
https://developer.mozilla.org/en-US/docs/Tools. Accessed: 2020-05-01.

[30] Usama Naseer, Theophilus A Benson, and Ravi Netravali. 2021.
WebMedic: Disentangling the Memory-Functionality Tension for the
Next Billion Mobile Web Users. In Proceedings of the 22nd International
Workshop on Mobile Computing Systems and Applications. 71–77.

[31] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrish-
nan. 2016. Polaris: Faster Page Loads Using Fine-grained Depen-
dency Tracking. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16). USENIX Association, Santa
Clara, CA. https://www.usenix.org/conference/nsdi16/technical-
sessions/presentation/netravali

[32] Ravi Netravali and James Mickens. 2018. Prophecy: Accelerating
Mobile Page Loads Using Final-state Write Logs. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, Renton, WA, 249–266. https://www.usenix.org/
conference/nsdi18/presentation/netravali-prophecy

[33] Travis Roman. 2018. JS Blocker. https://jsblocker.toggleable.com/.
Accessed: 2020-05-02.

[34] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Har-
sha V Madhyastha. 2017. Vroom: Accelerating the mobile web with
server-aided dependency resolution. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication. 390–403.

[35] Stefan Van der Walt, Johannes L Schönberger, Juan Nunez-Iglesias,
François Boulogne, Joshua D Warner, Neil Yager, Emmanuelle Gouil-
lart, and Tony Yu. 2014. scikit-image: image processing in Python.
PeerJ 2 (2014), e453.

[36] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy,
and David Wetherall. 2013. Demystifying Page Load Performance
with WProf. In Presented as part of the 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13). USENIX,
Lombard, IL, 473–485. https://www.usenix.org/conference/nsdi13/
technical-sessions/presentation/wang_xiao

[37] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016.
Speeding up Web Page Loads with Shandian. In 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 16).
USENIX Association, Santa Clara, CA, 109–122. https://www.usenix.
org/conference/nsdi16/technical-sessions/presentation/wang

[38] Xiong Zhang and Philip J Guo. 2018. Fusion: Opportunistic web pro-
totyping with ui mashups. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology. 951–962.

[39] Sharon Zhou, Mitchell L Gordon, Ranjay Krishna, Austin Narcomey,
Li Fei-Fei, and Michael S Bernstein. 2019. Hype: A benchmark for
human eye perceptual evaluation of generative models. arXiv preprint
arXiv:1904.01121 (2019).

https://doi.org/10.1038/s41586-020-2649-2
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.ghostery.com/
https://www.sitespeed.io/documentation/browsertime/introduction/
https://www.sitespeed.io/documentation/browsertime/introduction/
https://developer.mozilla.org/en-US/docs/Tools
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi18/presentation/netravali-prophecy
https://www.usenix.org/conference/nsdi18/presentation/netravali-prophecy
https://jsblocker.toggleable.com/
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang

	1 Introduction
	2 Motivation
	2.1 Web Complexity Solutions
	2.2 Impact of these Solutions on the Page Quality

	3 Related Work
	4 The design of QLUE
	4.1 Structural Similarity
	4.2 Functional Similarity

	5 Implementation
	5.1 Structural Similarity Implementation
	5.2 Functional Similarity Implementation

	6 Evaluations
	6.1 User Study
	6.2 Time Complexity

	7 Discussions
	7.1 An Independent Expert Assessment on QLUE's Usage
	7.2 Limitations

	8 Conclusion
	9 Acknowledgments
	References

