
The Case for Model-Driven Interpretability of Delay-based
Congestion Control Protocols

Muhammad Khan
New York University Abu Dhabi, UAE

mk7406@nyu.edu

Yasir Zaki
New York University Abu Dhabi, UAE

yasir.zaki@nyu.edu

Shiva Iyer
New York University, USA

shiva.iyer@nyu.edu

Talal Ahamd
Google, USA

ahmad@cs.nyu.edu

Thomas Poetsch
New York University Abu Dhabi, UAE

thomas.poetsch@nyu.edu

Jay Chen
ICSI Berkeley, USA
jay.chen@nyu.edu

Anirudh Sivaraman
New York University, USA

anirudh@cs.nyu.edu

Lakshmi Subramanian
New York University, USA

lakshmi@nyu.edu

ABSTRACT
Several new delay-based congestion control protocols are proposed
with complex non-linear control loops. However, analyzing and in-
terpreting their exact behavior is exceptionally hard, especially when
the underlying network is highly variable, like in cellular networks.
This paper proposes Model-Driven Interpretability (MDI), a new
congestion control modeling framework to reason about the behavior
of such delay based protocols under variable network conditions. The
MDI framework allows us to derive a model version of a delay-based
protocol by simplifying a congestion control protocol’s response
into a guided random walk over a two-dimensional Markov model.
We demonstrate the case for the MDI modeling framework by show-
ing how one can use MDI to analyze and interpret the behavior of
two sample delay based protocols over cellular channels: Verus and
Copa. Our results show that the model versions of the protocols
successfully approximate the throughput and delay characteristics
of these protocols across variable network conditions. We show that
the learned model of a protocol can provide key insights into the
convergence properties of an algorithm and can potentially be useful
as a drop-in replacement of the original protocols.

1 INTRODUCTION
Cellular channels are known to fluctuate rapidly over short periods of
time [29]. 3G and LTE network measurements [10, 11, 16] demon-
strated that variations in the channel cause significant performance
differences across carriers, access technologies, geographic regions,
and time. Rapid channel fluctuations cause loss-based congestion
control (CC) algorithms to overreact and under perform [3], resulting
in buffer-bloat and high delays [7, 8, 13]. Several protocols such as
Sprout [27], Copa [2], Verus [29] and BBR [3] have demonstrated
significant performance gains against traditional TCP variants over
highly variable network channels. A common recurring theme across
these protocols is to use delay-based signals to measure the network
congestion state. While there is a broad array of research on the
dynamics of loss-based CC protocols [4, 18, 23], we still lack a prin-
cipled framework for understanding the dynamics of delay-based
protocols.

This paper proposes Model-Driven Interpretable (MDI) CC frame-
work, aiming to enhance the ability to interpret delay-based CC

protocols’ behavior. Given any protocol, the MDI framework uses
empirical data on the protocol’s performance for training a stochas-
tic two-dimensional discrete-time Markov model to represent the
protocol’s behavior. In essence, using the empirical behavior of a
protocol across diverse network conditions, MDI converts a protocol
into a stochastic random walk in Markovian state space. Each state
transition is determined by the delay variation feedback from the
network. The protocol MDI aims to:

(1) Closely approximates the mean/variance of the throughput
and delay distributions of the original protocol.

(2) Track the original protocol’s temporal behavior, i.e., how to
react to variations in network conditions.

We note that achieving these two properties for a broad array of
protocols is a non-trivial task. In the MDI framework, the notion of
protocol memory is implicitly captured in the definition of the state
space (transition probabilities), and the stochastic random walk using
delay feedback. While the state space does represent a significant
approximation to the original protocol, we show that in practice,
MDI successfully approximates the behavior of the original protocol.

To evaluate MDI, we developed MDI versions of two different
protocols: Verus [29] and Copa [2]. Using real-world cellular traces
in 3G and 4G networks and across synthetic highly variable network
conditions, we show that the MDI version of a protocol closely ap-
proximates the throughput and delay distributions of the original
protocol and temporally tracks the protocols’ behavior. We demon-
strate three specific benefits of MDI in this paper:
Visualizing Protocols: A state-space representation of a protocol
enables visual understanding of its behavior including measuring
how state-space transitions vary across: (i) protocols under the same
network condition; (ii) network conditions under the same protocol.
Reasoning about Convergence: By representing a protocol in a
Markovian state space, one can derive the mixing time and the cor-
responding stationary distribution of the MDI version of a protocol
which we show empirically to closely mirror the measured statistical
properties of the protocol.
Drop-in replacement: MDI models can be used as a drop-in re-
placement for the original protocol to potentially reduce the imple-
mentation complexity of new protocols.

ACM SIGCOMM Computer Communication Review

The MDI framework as presented in this paper is a smaller part of
a much larger puzzle of understanding the properties of delay-based
control protocols. What this paper has primarily shown is the feasi-
bility of the MDI framework in modeling two such protocols using a
Markov Model representation. One long term motivation of using a
Markovian framework is to leverage the vast body of statistics litera-
ture on Markov models and random walks to understand the stability,
dynamics, and adaptivity of delay-based protocols. While we have
shown initial empirical evidence for analyzing convergence prop-
erties of protocols and visualizing protocols using MDI, a detailed
statistical analysis of protocols using this framework is a subject for
future work and is beyond the scope of this paper.

2 MDI DESIGN
The main idea of MDI is to build a model that reflects the statistical
properties, providing a more intuitive and predictable understanding
of the protocol behavior. At an abstract level, MDI assumes that CC
protocols can be modeled by the relationship between the current
and the next state, where each state is a tuple of the relative change
in the network delay and the sending window size.

2.1 Modeling Delay based Control
Consider a protocol 𝑃 that uses delay-variations as a congestion
signal. One can imagine such a protocol maintains a recent history
of delay observations, which can be used to estimates the next send-
ing window or rate. Let us consider an epoch as the unit of time
for making a decision, which can be a variable or a fixed period
depending on the protocol.

The challenge in a Markov model representation of a protocol 𝑃
is determining the appropriate state space and mapping the protocol
actions to transitions within the states. The most straightforward
approach is to map the absolute values directly by describing a state
as (𝑑𝑖 ,𝑤𝑖) where 𝑑𝑖 and 𝑤𝑖 are the experienced delay and sending
window in an epoch 𝑖, respectively. For brevity, we use 𝑑 and 𝑤

(without the epoch subscript 𝑖) to abstractly represent the observed
delay and window parameters. While a two-variable state space us-
ing (𝑑,𝑤) is simple, it may not be rich/generic since it may not be
sufficient to capture the variations in these parameters. If one were
to represent the state space using a history of delay and window
measurements, the state space representation could be much more
vibrant, but correspondingly much harder to accurately learn. In
fact, for each additional dimension in the state space, we need an
order of magnitude more training data to determine the state tran-
sitions. To capture the variations of the delay and window in the
state space, we also consider: (1) relative change in the delay across
neighboring epochs (captured by 𝛼 (𝑑)); (2) relative change in the
window across adjacent epochs (obtained by 𝛽 (𝑤)). These four pa-
rameters provide a richer representation of the state space. However,
the training data required for the 4-dimensional space is at least two
orders of magnitude more than the (𝑑,𝑤) space. To balance between
state complexity and state richness, we chose to condense these four
parameters into two composite parameters as 𝛼 (𝑑) · 𝑙𝑜𝑔10 (𝑑) and
𝛽 (𝑤) · 𝑙𝑜𝑔10 (𝑤). By representing the delay and window in log space
and quantizing the values (described in Section 2.2), we are able
to better delineate variations in relative delay (or window) changes
in comparison to variations in the actual delay (or window) values

across different buckets in the state space. The quantization of these
values also helps in maintaining a condensed two parameter repre-
sentation of the four parameters: window, delay, relative change in
window size and the relative change in delay across epochs. We do
note that one can choose alternate state space representations for
the MDI framework; the key requirements are to balance between
the number of quantized states in the state space with the ability to
capture protocol dynamics across different network conditions.

2.2 Discrete-time Markov Model States
A discrete-time Markov model of a protocol is represented in the
form of a state-transition probability matrix. The matrix describes
transition probabilities from one state to another obtained by train-
ing a protocol on a large set of network configurations. We call
this the training phase of the Markov model. To capture the proto-
col behavior, the matrix should include as many states as the ones
observed during the training. The state is defined as a tuple with
value pairs of (𝑑𝑖 ,𝑤𝑖). Where 𝑑𝑖 and 𝑤𝑖 are calculated using the
current epoch’s packet delays (𝑑𝑖) and sending-window (𝑤𝑖) and the
previous epoch’s delay (𝑑𝑖−1) and sending-window (𝑤𝑖−1):

𝑑𝑖 =

[(
𝑑𝑖

𝑑𝑖−1

)
− 1

]
∗ 𝑙𝑜𝑔10 (𝑑𝑖) (1)

𝑤𝑖 =

[(
𝑤𝑖

𝑤𝑖−1

)
− 1

]
∗ 𝑙𝑜𝑔10 (𝑤𝑖) (2)

Assume that a protocol 𝑃 adjusts the congestion window as a
function of delay feedback. A user executing protocol 𝑃 has cur-
rently the following values: the current sending window 𝑤𝑖 , and the
previous epoch delay feedback 𝑑𝑖−1. To decide on the value of the
next window 𝑤𝑖+1, the user has to first identify the current delay 𝑑𝑖 .
The protocol 𝑃 decides the next window𝑤𝑖+1 based on the following
factors: the prior window𝑤𝑖 , and the delay variations. Only upon ob-
serving 𝑑𝑖 , 𝑃 would be aware of the true represented state (𝑑𝑖 ,𝑤𝑖) in
the model space of the protocol. Essentially, given an initial window
𝑤𝑖 and delay 𝑑𝑖−1, the protocol 𝑃 has three variations that influence a
transition from (𝑑𝑖 ,𝑤𝑖) to (ˆ𝑑𝑖+1, ˆ𝑤𝑖+1): (i) the variation in the initial
observation 𝑑𝑖 ; (ii) the variation in the decision making of 𝑤𝑖+1; (iii)
the variation in the next delay observation 𝑑𝑖+1. Note that, it is not
necessary for two users running the same protocol 𝑃 and in the same
state (𝑑𝑖 ,𝑤𝑖), to derive the same next window 𝑤𝑖+1. This decision is
influenced by two factors: (i) different windows/delays values could
effectively arrive at the same model state (𝑑𝑖 ,𝑤𝑖); (ii) different flows
may observe variations in prior observations of delays and windows.

2.3 Deriving the MDI Transition Matrix
The key assumption that MDI makes is that the state transition from
(𝑑𝑖 ,𝑤𝑖) to (ˆ𝑑𝑖+1, ˆ𝑤𝑖+1) can be captured by a guided Markov model
with two basic properties: the delay feedback guides the direction of
the window change (increase or decrease), and the delay variations of
𝑑𝑖 and 𝑑𝑖+1 have an inherent randomness that influence the protocol
choice of the next window 𝑤𝑖+1. The guided Markov assumption is
clearly an approximation of the original protocol behavior.

To derive the transition matrix, we use a protocol emulation strat-
egy in a constrained network environment. Consider a network sim-
ulation environment where one can execute the protocol 𝑃 under

ACM SIGCOMM Computer Communication Review

various network conditions and background traffic. Our setup’s net-
work environment is defined by a set of network traces that specify
bandwidth, packet loss, and RTT variations. The protocol 𝑃 can be
executed by simulating network flows executing the protocol in the
presence of competing traffic. We perform a broad array of network
simulations by varying the network traces and the background traf-
fic emulating several real-world protocols, including 𝑃 . For each
simulation, we measure the state transitions of 𝑃 across the model
states. By observing all possible state transitions of (𝑑𝑖 ,𝑤𝑖), with 𝑑𝑖

ranging from 𝑑𝑚𝑖𝑛 to 𝑑𝑚𝑎𝑥 , and 𝑤𝑖 ranging from �̂�𝑚𝑖𝑛 to �̂�𝑚𝑎𝑥 , a
2D Markov chain is created defining the following states: current
state (𝑑𝑘 ,𝑤𝑙) and next state (𝑑𝑟 ,𝑤𝑣), where 𝑘 and 𝑙 are the current
state indexes of 𝑑𝑖 and 𝑤𝑖 , respectively. Similarly, 𝑟 and 𝑣 represents
the next state indexes. To reduce the state space of possible values for
(𝑑𝑖 ,𝑤𝑖), we quantize these values into small buckets. MDI captures
the state transitions in the form of a transition probability matrix
written as:

𝑝 (𝑘,𝑙),(𝑟,𝑣) = 𝑝 [(𝑑𝑘 ,𝑤𝑙) | (𝑑𝑟 ,𝑤𝑣)] . (3)

Thus, (𝑑𝑘 ,𝑤𝑙) defines a specific row in the transition matrix. De-
pending on ˆ𝑑𝑖+1 next value, represented by 𝑟 , we obtain a subset of
values from this specific row (i.e., the probability going to any of the
possible ˆ𝑤𝑖+1 in the state (𝑑𝑟 ,𝑤𝑣).

2.4 Model Training Methodology
This paper focuses on training two delay-based protocols: Verus
and Copa. The training is performed over a large sample of cellu-
lar traces covering a wide range of diverse scenarios. We ran each
protocol through a network emulator over a large set of traces ran-
domly synthesized from the training traces. In each run, the protocol
behavior is captured by logging the set of congestion windows and
their experienced correlated delays. Next, the logged window and
delay values are quantized (Equation 1 and 2). The quantized values
are used to obtain the transition probability matrix where each state
is the quantized pair (𝑤𝑖 , 𝑑𝑖). The matrix is structured in quadrants,
highlighted by yellow and green in Figure 1.

w
0

w
1

.
d

0

. w
m

w
0

w
1

.
d

1

. w
m

w
0

w
1

.
.

. w
m

w
0

w
1

.
d

n

. w
m

(%d *log(d), %w *log(w))

w0

w1

d0 .
.

wm

w0

w1

d1 .
.

wm

w0

w1

. .
.

wm

w0

w1

dn .
.

wm

(%
d

*l
og

(d
),

%
w

*l
og

(w
))

Figure 1: Transition Probability representation of a Model

Each quadrant represents a particular current delay 𝑑𝑖 on the y-
axis and a next delay ˆ𝑑𝑖+1 on the x-axis, these values are quantized in
the range 𝑑0 to 𝑑𝑛 to keep the matrix from being prohibitively long.
Each quadrant is further divided into smaller chunks representing
the current values of 𝑤𝑖 on the y-axis and a next window variable
ˆ𝑤𝑖+1 on the x-axis, which are quantized in the range 𝑤0 to 𝑤𝑛 .

Figure 1 shows an empty sample matrix. The transition probability
for each chunk is computed by counting the number of occurrences

of going from one state to another as [(𝑑𝑖 ,𝑤𝑖), (𝑑𝑖+1, �̂�𝑖+1)]. We
normalize each row within a quadrant so that all outgoing transition
probabilities of any state would sum to 1.

2.5 MDI Implementation
We implemented a generic sender and receiver in C that takes a
transition matrix as an input and uses the matrix to decide the next
sending window. The sender uses UDP as the transport protocol. It
includes functions for calculating the packet delays based on the
incoming ACKs and uses the delay to determine the sending window
size after each epoch. Epoch time is when the algorithm updates the
congestion window. Algorithm 1 outlines the MDI control loop. The
model algorithm identifies the next sending window �̂�𝑖+1 in every
epoch, obtained from the transition matrix, where a row within a
quadrant of the matrix represents all possible values for the future
sending window. MDI first identifies the operating quadrant through
the row and column index. The row index is taken from the previous
delay 𝑑𝑖 , and the column index from the current delay 𝑑𝑖+1 (inferred
from the incoming ACKs). Once the operating quadrant is identi-
fied, a particular row within the quadrant can be determined by the
previous sending window �̂�𝑖 . This row represents all possible send-
ing windows decisions for the next epoch, each associated with a
specific probability value. To decide the next sending window, MDI
draws a random number (between 0 and 1) to determines the closest
matching sending window. This process is a guided random-walk
within the state transition probability matrix. If the values are outside
the matrix dimensions, the next sending window is determined by
a multiplicative increase/decrease to the current window to force it
back to the matrix bounds (𝑐1 and 𝑐2).

Algorithm 1 MDI pseudo-code

1: while TRUE do
2: Compute 𝑑𝑖+1 from ACKs
3: if 𝑑𝑖+1 < 𝑑𝑚𝑖𝑛 then
4: (Increase �̂�𝑖+1 using const. multiplier 𝑐1 > 1)
5: �̂�𝑖+1 ← �̂�𝑖 ∗ 𝑐1
6: else if 𝑑𝑖+1 > 𝑑𝑚𝑎𝑥 then
7: (Decrease �̂�𝑖+1 using const. multiplier 𝑐2 < 1)
8: �̂�𝑖+1 ← �̂�𝑖 ∗ 𝑐2
9: else

10: Determine matrix quadrant← 𝑑𝑖 and 𝑑𝑖+1
11: Determine row within quadrant← �̂�𝑖
12: �̂�𝑖+1 ← Randomly choose next state using transition

probabilities in the chosen row
13: sleep(epoch) ⊲ epoch depends on the algorithm

3 EVALUATION
We evaluated two CC protocols as a proof-of-concept of MDI: Verus,
and Copa. These protocols are modeled through the training phase
by generating the model transition matrix. The training is done using
a set of 1000 different cellular traces (collected from real-world
3G/4G networks) that cover a wide range of network scenarios. To
replay these traces, we used the MahiMahi [15] linkshell network
emulator. We used a different set of cellular traces for testing, taken
from several previously published papers:

ACM SIGCOMM Computer Communication Review

0 100 200 300
0

20

Th
ro

ug
hp

ut
(M

bp
s)

0 100 200 300
Time (s)

102

103

D
el

ay
 (

m
s) verus

modelVerus

(a) instantaneous

0 20 40 60
Throughput (Mbps)

0.00

0.05

PD
F

0 200 400 600 800
Delay (ms)

0.000

0.005

PD
F verus

modelVerus

(b) PDF

0 100 200 300
Delay (s)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (

M
bp

s)

verus
modelVerus

(c) Population

Figure 2: Verus Highway

0 100 200 300
0

20

Th
ro

ug
hp

ut
(M

bp
s)

0 100 200 300
Time (s)

102

D
el

ay
 (

m
s) modelCopa

copa

(a) instantaneous

0 10 20 30
Throughput (Mbps)

0.00

0.05

PD
F

0 200 400 600 800
Delay (ms)

0.00

0.01

PD
F modelCopa

copa

(b) PDF

0 100 200 300
Delay (s)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (

M
bp

s)

modelCopa
copa

(c) Population

Figure 3: Copa Highway

0 100 200 300
0

10

Th
ro

ug
hp

ut
(M

bp
s)

0 100 200 300
Time (s)

102

103

D
el

ay
 (

m
s) verus

modelVerus

(a) instantaneous

0 20 40 60
Throughput (Mbps)

0.0

0.1

PD
F

0 200 400 600 800
Delay (ms)

0.000

0.005

PD
F verus

modelVerus

(b) PDF

0 100 200 300
Delay (s)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (

M
bp

s)
verus
modelVerus

(c) Population

Figure 4: Verus Rapidly changing network

0 100 200 300
0

10

Th
ro

ug
hp

ut
(M

bp
s)

0 100 200 300
Time (s)

102

103

D
el

ay
 (

m
s) modelCopa

copa

(a) instantaneous

0 5 10 15 20
Throughput (Mbps)

0.0

0.1

PD
F

0 200 400 600 800
Delay (ms)

0.00

0.01

PD
F modelCopa

copa

(b) PDF

0 100 200 300
Delay (s)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (

M
bp

s)

modelCopa
copa

(c) Population

Figure 5: Copa Rapidly changing network

0 100 200 300
0

20

40

Th
ro

ug
hp

ut
(M

bp
s)

0 100 200 300
Time (s)

102

103

104

D
el

ay
 (

m
s) verus

modelVerus

(a) instantaneous

0 20 40 60
Throughput (Mbps)

0.00

0.05

PD
F

0 200 400 600 800
Delay (ms)

0.000

0.005

PD
F verus

modelVerus

(b) PDF

0 100 200 300
Delay (s)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (

M
bp

s)

verus
modelVerus

(c) Population

Figure 6: Verus 4G Verizon

0 100 200 300
0

20

40

Th
ro

ug
hp

ut
(M

bp
s)

0 100 200 300
Time (s)

102

103

104

D
el

ay
 (

m
s) modelCopa

copa

(a) instantaneous

0 20 40
Throughput (Mbps)

0.00

0.05

PD
F

0 200 400 600 800
Delay (ms)

0.000

0.005

PD
F modelCopa

copa

(b) PDF

0 100 200 300
Delay (s)

0

5

10

15

20

25

Th
ro

ug
hp

ut
 (

M
bp

s)

modelCopa
copa

(c) Population

Figure 7: Copa 4G Verizon

• 4G Verizon: taken from [27] and represents a recorded chan-
nel over Verizon’s 4G network in the US.
• Highway: taken from [29], it represents a channel over a 3G

network in the UAE while driving on a highway.
• Rapidly changing network: inspired by [5], this trace repre-

sents a network with a highly fluctuating channel, where the
capacity varied randomly every 5 seconds.

We wanted to evaluate how well a model representation of an al-
gorithm can track the throughput and delay of the native algorithms
when run on the same network traces. This section shows the results
for the MDI versions of Verus and Copa. For each protocol, we
demonstrate the temporal variations of the original protocol against
the MDI version of the protocol for a snippet of a 300 second run
in one of the three scenarios in Figure 2a, 3a, 4a, 5a, 6a, and 7a.
The results show that across both protocols (Verus and Copa), the
MDI models (represented in red) are able to accurately track the
throughput of the native protocol (represented in blue) temporally.
In addition, the MDI models are able to temporally track the delay
behavior of these protocols. To quantify that the MDI models sta-
tistically matches the characteristics of the original protocols, we
computed the Probability Density Function (PDF) of the throughput

and delay for both Verus and Copa respectively. Figure 2b, 3b, 4b,
5b, 6b, and 7b shows the PDF comparisons. It can be seen that the
MDI throughput distributions match the native ones perfectly.

In summary, we observe that MDI have the ability to accurately
track the throughput behavior of the two used protocols across highly
variable network conditions, evident by the results of Figure 2c, 3c,
4c, 5c, 6c, and 7c. The figures show the overall summary comparing
different values of the results population. Each of the MDI model
and the native protocol is depicted by a circular shape representing
the operational region of the protocol circumscribed by the 25%
and 75% percentile of the obtained throughput and delay, where the
crosses (x) indicate the median values. The lower and upper part of
the shape represents 25% and 75% of the throughput, respectively
(y-axis), whereas the left and right part of the shape represents the
25% and 75% of the delay, respectively (x-axis). Results show that
MDI is capable of achieving quite similar statistical performance
in terms of delay and throughput with a slight delay penalty not
exceeding 5% (i.e., in the rapidly changing channel).

ACM SIGCOMM Computer Communication Review

4 RELATED WORK
CC for cellular networks: conventional loss-based TCP variants,
in particular Cubic [9], performs poorly in cellular networks. This
is due to the high sending rate that fills up the buffers causing
a bufferbloat [7]. Bufferbloat is detrimental to the performance
of delay-sensitive applications like video calling. This has led to
newer delay-based CC protocols like Sprout [27] and Verus [29] that
were specifically designed in the context of cellular channels. While
Sprout focuses on reducing self-inflicted queuing delays, Verus is
designed to create a balance between the packet delays and the
throughput. Recently, PCC Vivace [6], which followed PCC [5],
has shown to react well to changing networks while alleviating the
bufferbloat. PCC Vivace leverages ideas from online (convex) op-
timization in machine learning to do rate control. LEDBAT [21]
is another delay-based CC algorithm developed for BitTorrent and
other bulk-transfer applications that had limited adoption. BBR [3]
was recently proposed by Google and has shown good results over
cellular networks. BBR uses the bottleneck link’s round trip propa-
gation and bandwidth to find the optimum operating point for CC.
Applying machine learning to CC: new CC protocols being pro-
posed have complex control loops, which makes them harder to
understand in the context of different network conditions. The recent
development of CC protocols that employ machine learning (e.g.,
Remy [26], Vivace [6] and Indigo [28]) have only compounded this
issue (e.g., some of Remy’s CC protocols employ rule tables with
more than 100 rules). Weinstein et. al. (Remy) [26], Sivaraman et.
al. [22] and Pötsch [19] have provided different methodologies to
model non-linear CC from a theoretical perspective.
Analyzing TCP behavior: TCP and its variants have been thor-
oughly studied using the modeling and analytical techniques [4, 18,
20, 24, 25]. A recent work called ACT [23] uses the concept of a
guided random walk in the state space of implementation variables,
to find regions where the algorithm should never go, thereby indi-
cating the existence of a possible bug in the implementation. Others
also follow this approach of an automated model-guided method as
well [12] to explore the variable space in the implementation of a
CC algorithm. Our modeling approach also uses a random walk, but
our state space is limited to a delay and window variable, and our
goal is not to reach unreachable points but to guide the model to
follow the native algorithm it is modeling.

5 DISCUSSION: WHY MDI?
5.1 Visualizing Protocols
The MDI transition matrix helps reason about the essence of the CC
protocol behavior. Given that these matrices represent the probability
distributions across the transition space, it highlights which states the
protocol mostly operates in. It also shows how the protocol is likely
to behave under specific network changes, such as an increase or
decrease in the network delay. Verus and Copa’s transition matrices
(Figure 8a and 8b) clearly shows that the Verus matrix is less dense
than Copa’s, which means that Verus takes more decisive actions
compared to Copa that tend to explore more. Each protocol shows
a particular pattern that reflects the protocol’s behavior; we call
this the protocol fingerprint. The sectors in the matrix represent
different transitions for a specific change in packet delay. The relative
delay and window ranges are determined from the training phase,

representing the 1% and 99% of the observed increase/decrease
population.

The protocols’ fingerprints reveal different characteristics of the
protocol and how it reacts to various network changes. For example,
the Verus transition matrix generally shows two distinct recurring
patterns in the sectors: one in the left side of the matrix, and the other
on the right side. We can see that the right side pattern mainly con-
tains window decrease probabilities. This is consistent with Verus’s
design, where if the observed delay increases, Verus lowers the
sending rate by moving the operation point down the delay profile
curve.

20 0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 20

(d, w)

20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

20

(d
, w

)

10 2

10 1

100

-1
0

-8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

(a) Verus

20 0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 ±2
0

0 20

(d, w)

20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

±20
0

20

(d
, w

)

10 2

10 1

-1
0

-8 -6 -4 -2 0 2 4 6 8 10

10

8

6

4

2

0

-2

-4

-6

-8

-10

(b) Copa

Figure 8: MDI transition probability matrices

However, the left side pattern consists mainly of a diagonal line
from the upper left corner down to the lower right corner. Addi-
tionally, the pattern also has an anti-diagonal, which becomes more
dominant, moving down the sectors (i.e., when the delay feedback
increases). This gives another insight to Verus. If a decrease in the
previous delay is observed, it tends to continue alongside the same
previous decision, extending the last window to decrease or increase.
However, if Verus finds a delay-decrease with a prior increase in the
delay, there is a higher probability that it might increase the window
in the next decision despite the window decrease in the previous
epoch. This confirms Verus’s exploration behavior, where, in case
of a delay reduction, it tends to increase the window to explore the
channel variations immediately.

Copa’s transition matrix, on the other hand, shows that the right
side sectors of the matrix show almost the same pattern, with sub-
stantial probabilities in the upper left and lower right corners of the
sectors and nearly no values in the top right or lower left edges. This
means that regardless of the previous delay values or the severity
of the observed delay values’ increase, Copa tends to repeat its last
epoch decision. For example, if Copa reduces the window, it will
continue doing so in the next epochs. Unlike Verus, where it tends to
minimize the window in case of an observed delay increase. Look-
ing at the left sectors of Copa’s matrix, we see that it has a similar
pattern to the right side sectors with additional values in the upper
right corner. These values become less dominant when moving down
from the top to the bottom sectors. The sector’s upper right corner
represents increasing the window despite a reduction in the window
in the previous epoch. Like Verus, Copa tends to increase the win-
dow by observing a delay reduction, and the severity of exploring
increases, when the previous observed delays are decreasing.

ACM SIGCOMM Computer Communication Review

-20 -10 0 10 20
w

-10

0

10

d

Theoretical stationary distribution

-20 -10 0 10 20
w

Steady-state distribution (original)

-20 -10 0 10 20
w

Steady-state distribution (model)

10 7 10 6 10 5 10 4 10 3 10 2

(a) Verus

-20 -10 0 10 20
w

-10

0

10

d

Theoretical stationary distribution

-20 -10 0 10 20
w

Steady-state distribution (original)

-20 -10 0 10 20
w

Steady-state distribution (model)

10 7 10 6 10 5 10 4 10 3 10 2

(b) Copa

Figure 9: Comparison between the theoretical stationary (probability) distribution of the Markov chain model (left) that is trained on
the training set of traces vs. the empirical distribution over the state space after mixing time for both the original and model versions
of both protocols on the real world test traces. These are for mixing time threshold (𝜖) 10−3.

Protocol 𝜖 = 10−3 𝜖 = 10−5 𝜖 = 10−7

Verus 24 55 85
Copa 8 24 41

Table 1: Mixing times (in RTTs) for both protocols, calculated
from the Markov model.

5.2 Convergence
Using our Markov formulation, we can provide convergence guaran-
tees as strong as the original protocols, using properties of conver-
gence of Markov chains. Before presenting our results, we briefly
review some necessary notations and definitions regarding Markov
chains and convergence.

Markov chains and Mixing times: Every Markov chain can be
represented as a transition matrix 𝑃 , where the entry 𝑝𝑖 𝑗 represents
the probability of transitioning to state 𝑗 from state 𝑖. Suppose 𝜇 (𝑡)

is row vector that represents a probability distribution over the state
space at a time 𝑡 . Then at 𝑡 + 1, the distribution over the state space
is given by 𝜇 (𝑡+1) = 𝜇 (𝑡)𝑃 . If the initial distribution at 𝑡 = 0 is
given by 𝜇 (0) , then we have from above that 𝜇 (𝑡) = 𝜇 (0)𝑃𝑡 . The
limiting distribution 𝜆 is the limit of 𝜇 (𝑡) as 𝑡 → ∞. If a unique
limiting distribution exists, then it equals the stationary distribution,
which is the row vector 𝜋 , such that 𝜋𝑃 = 𝜋 . It is computed as the
left eigenvector of the transition matrix corresponding to the largest
eigenvalue [17]. The mixing time of a Markov chain, 𝑡mix, is the
time 𝑡 to convergence from an initial distribution 𝜇 (0) , i.e., when
the probability distribution 𝜇 (𝑡) over the state space is sufficiently
“close” to the stationary distribution 𝜋 that they are indistinguishable
from one another. Any random walk process in a finite Markov
space is associated with a finite mixing time [1]. To obtain the most
conservative estimate, we define the mixing time as the maximum
time to convergence starting from all possible initial states.

Observations: In our context, the state space comprises of the
Cartesian product of 11 states in the delay space ⟨𝑑⟩ and 21 states in
the window space ⟨�̂�⟩, a total of 231 (𝑑, �̂�) tuples. If the start state
is 𝑖, then the initial distribution 𝜇 (0) is a one-hot vector, with 1 at
the location corresponding to state 𝑖 and 0 everywhere else. Then,
at every iteration 𝑡 (equivalent to an RTT), we compute 𝜇 (𝑡+1) =
𝜇 (𝑡)𝑃 , and declare convergence at time 𝑡mix when the maximum
element-wise difference between 𝜇 (𝑡mix) and 𝜇 (𝑡mix+1) is less than a
certain defined threshold (𝜖). We compute mixing times for three

Testing protocol 𝐷𝐾𝐿 (𝑃 | |𝑄) max |𝑃 −𝑄 |
Copa 0.017 0.004
Model Copa 0.147 0.01
Verus 0.101 0.02
Model Verus 0.773 0.054

Table 2: KL Divergence of the steady-state distribution of the
states (𝑄) in the testing set after mixing time w.r.t. the station-
ary distribution (𝑃) computed from the Markov model, which
is trained on the training set.

different thresholds: 10−3, 10−5 and 10−7. The last is chosen as it
approximately equals the machine epsilon for 32-bit float. Table 1
shows the mixing times (in RTTs) obtained from the transition matrix
for both protocols.

The heatmaps in Figure 9 show the theoretical stationary distri-
bution computed using the Markov chain transition matrix trained
over a training sample of 1000 traces, compared with the empirical
distribution of states after convergence (i.e. the mixing time) of the
original protocols and the model versions over a separate testing
sample of 60 cellular traces. The heatmaps are displayed over the
two-dimensional (𝑑, �̂�) state space. The fact that these distributions
match very closely is a robust result that our Markov model versions
of the protocols are very close approximations of the original proto-
cols. Table 2 shows the closeness of the two distributions in terms
of the Kullback-Leibler Divergence [14] of the two distributions.
The KL Divergence is a measure of how well one distribution ap-
proximates another. The closer the KL Divergence is to zero, the
better the approximation. The table also additionally shows a simple
maximum element-wise absolute difference between the two dis-
tributions. From the heatmap plots and these numbers, we observe
that the model allows us to analyze the convergence properties of
the original protocols, which has been known to be a challenging
proposition for delay-based protocols due to complex non-linear
control loops.

5.3 Drop-in replacement for CC protocols
The MDI representation essentially provides a lookup table of a pro-
tocol that can be plugged into the implementation of Algorithm 1. A
model version of an algorithm can be used as a drop-in replacement
for the actual algorithm and multiple such algorithms can be using
the same reference implementation with different lookup tables. This

ACM SIGCOMM Computer Communication Review

provides the ability to support dynamic congestion control switching
that enables easy switching to a different CC protocols for different
network conditions. If network conditions are known in advance, one
can use model versions of a protocol known to perform well in such
network conditions. In future work, we aim to test and extend the
framework to capture the behavior of a broader array of congestion
control protocols.

6 CONCLUSIONS
This paper describes the MDI framework that can approximate the
behavior of delay based protocols and potentially aid in visualiz-
ing protocol behavior, understanding convergence properties and
deriving a model-based protocol replacement. We hope that this
Markov modeling approach provides a new lens for understanding
the behavior of delay-based congestion control algorithms on highly
variable networks. In future work, we hope to extend this frame-
work to understand the behavior of a broader array of protocols,
analyze fairness properties of MDI protocols and explore alternative
state-space protocol representations within MDI.

REFERENCES
[1] David Aldous. 1983. Random walks on finite groups and rapidly mixing Markov

chains. In Séminaire de Probabilités XVII 1981/82. Springer, 243–297.
[2] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical Delay-Based Conges-

tion Control for the Internet. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18). USENIX Association, Renton, WA, 329–
342. https://www.usenix.org/conference/nsdi18/presentation/arun

[3] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. Queue 14, 5,
Article 50 (Oct. 2016), 34 pages. https://doi.org/10.1145/3012426.3022184

[4] Neal Cardwell, Stefan Savage, and Thomas Anderson. 2000. Modeling TCP
latency. In Proceedings IEEE INFOCOM 2000. Conference on Computer Com-
munications. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No. 00CH37064), Vol. 3. IEEE, 1742–1751.

[5] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. 2015. PCC: Re-
architecting Congestion Control for Consistent High Performance. In Proceedings
of the 12th USENIX Conference on Networked Systems Design and Implementation
(NSDI 15). Oakland, CA, USA, 395–408.

[6] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten God-
frey, and Michael Schapira. 2018. {PCC} Vivace: Online-Learning Congestion
Control. In 15th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 18). 343–356.

[7] Jim Gettys and Kathleen Nichols. 2011. Bufferbloat: Dark buffers in the Internet.
Queue 9, 11 (2011), 40.

[8] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and Subhabrata
Sen. 2016. Understanding On-device Bufferbloat for Cellular Upload. In Proceed-
ings of the 2016 Internet Measurement Conference (IMC 16). Santa Monica, CA,
USA, 303–317.

[9] S. Ha, I. Rhee, and L. Xu. 2008. CUBIC: a new TCP-friendly high-speed TCP
variant. ACM SIGOPS Operating Systems Review 42, 5 (2008), 64–74.

[10] Zhenxian Hu, Yi-Chao Chen, Lili Qiu, Guangtao Xue, Hongzi Zhu, Nicholas
Zhang, Cheng He, Lujia Pan, and Caifeng He. 2015. An In-depth Analysis of
3G Traffic and Performance. In Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges (AllThingsCellular ’15). ACM,
New York, NY, USA, 1–6. https://doi.org/10.1145/2785971.2785981

[11] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z. Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. 2013. An In-depth Study of LTE:

Effect of Network Protocol and Application Behavior on Performance. In Proceed-
ings of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13).
ACM, New York, NY, USA, 363–374. https://doi.org/10.1145/2486001.2486006

[12] Samuel Jero, Endadul Hoque, David Choffnes, Alan Mislove, and Cristina Nita-
Rotaru. 2018. Automated attack discovery in TCP congestion control using a
model-guided approach. In Proc. of Network and Distributed System Security
Symp., San Diego, CA, USA. 1–15.

[13] Haiqing Jiang, Yaogong Wang, Kyunghan Lee, and Injong Rhee. 2012. Tackling
Bufferbloat in 3G/4G Networks. In Proceedings of the 2012 Internet Measurement
Conference (IMC ’12). ACM, New York, NY, USA, 329–342. https://doi.org/10.
1145/2398776.2398810

[14] S. Kullback and R. A. Leibler. 1951. On Information and Sufficiency. The
Annals of Mathematical Statistics 22, 1 (1951), 79–86. http://www.jstor.org/
stable/2236703

[15] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-
and-Replay for {HTTP}. In 2015 {USENIX} Annual Technical Conference
({USENIX}{ATC} 15). 417–429.

[16] Ashkan Nikravesh, David R. Choffnes, Ethan Katz-Bassett, Z. Morley Mao,
and Matt Welsh. 2014. Mobile Network Performance from User Devices: A
Longitudinal, Multidimensional Analysis. In Proceedings of the 15th International
Conference on Passive and Active Measurement - Volume 8362 (PAM 2014).
Springer-Verlag New York, Inc., New York, NY, USA, 12–22. https://doi.org/10.
1007/978-3-319-04918-2_2

[17] J. R. Norris. 1997. Markov Chains. Cambridge University Press. https://doi.org/
10.1017/CBO9780511810633

[18] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. 1998. Modeling
TCP throughput: A simple model and its empirical validation. ACM SIGCOMM
Computer Communication Review 28, 4 (1998), 303–314.

[19] Thomas Pötsch. 2016. Future Mobile Transport Protocols: Adaptive Congestion
Control for Unpredictable Cellular Networks. Springer.

[20] Charalampos (Babis) Samios and Mary K. Vernon. 2003. Modeling the Through-
put of TCP Vegas. In Proceedings of the 2003 ACM SIGMETRICS International
Conference on Measurement and Modeling of Computer Systems (SIGMETRICS
’03). ACM, New York, NY, USA, 71–81. https://doi.org/10.1145/781027.781037

[21] S. Shalunov, G. Hazel, J. Iyengar, and M. Kuehlewind. 2012. Low Extra Delay
Background Transport (LEDBAT). (December 2012). http://tools.ietf.org/rfc/
rfc6817.txt RFC6817.

[22] A. Sivaraman, K. Winstein, P. Thaker, and H. Balakrishnan. 2014. An Experimen-
tal Study of the Learnability of Congestion Control. In Proceedings of the ACM
SIGCOMM 2014 Conference. Chicago, IL, USA.

[23] Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. 2019. Model-Agnostic and
Efficient Exploration of Numerical State Space of Real-World {TCP} Congestion
Control Implementations. In 16th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 19). 719–734.

[24] A. Wierman and T. Osogami. 2003. A unified framework for modeling TCP-Vegas,
TCP-SACK, and TCP-Reno. In 11th IEEE/ACM International Symposium on Mod-
eling, Analysis and Simulation of Computer Telecommunications Systems, 2003.
MASCOTS 2003. 269–278. https://doi.org/10.1109/MASCOT.2003.1240671

[25] Adam Wierman, Takayuki Osogami, and Jörgen Olsén. 2003. Modeling TCP-
vegas Under on/off Traffic. SIGMETRICS Perform. Eval. Rev. 31, 2 (Sept. 2003),
6–8. https://doi.org/10.1145/959143.959146

[26] K. Winstein and H. Balakrishnan. 2013. TCP Ex Machina: Computer-generated
Congestion Control. In Proceedings of the ACM SIGCOMM 2013 Conference.
Hong Kong, China.

[27] Keith Winstein, Anirudh Sivaraman, Hari Balakrishnan, et al. 2013. Stochastic
Forecasts Achieve High Throughput and Low Delay over Cellular Networks.. In
Proceedings of the 10th USENIX Conference on Networked Systems Design and
Implementation (NSDI 13). Lombard, IL, 459–471.

[28] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip
Levis, and Keith Winstein. 2018. Pantheon: the training ground for Internet
congestion-control research. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18). 731–743.

[29] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and
Carmelita Görg. 2015. Adaptive congestion control for unpredictable cellular
networks. In Proceedings of the ACM SIGCOMM 2015 Conference. London, UK,
509–522.

ACM SIGCOMM Computer Communication Review

https://www.usenix.org/conference/nsdi18/presentation/arun
https://doi.org/10.1145/3012426.3022184
https://doi.org/10.1145/2785971.2785981
https://doi.org/10.1145/2486001.2486006
https://doi.org/10.1145/2398776.2398810
https://doi.org/10.1145/2398776.2398810
http://www.jstor.org/stable/2236703
http://www.jstor.org/stable/2236703
https://doi.org/10.1007/978-3-319-04918-2_2
https://doi.org/10.1007/978-3-319-04918-2_2
https://doi.org/10.1017/CBO9780511810633
https://doi.org/10.1017/CBO9780511810633
https://doi.org/10.1145/781027.781037
http://tools.ietf.org/rfc/rfc6817.txt
http://tools.ietf.org/rfc/rfc6817.txt
https://doi.org/10.1109/MASCOT.2003.1240671
https://doi.org/10.1145/959143.959146

	Abstract
	1 Introduction
	2 MDI Design
	2.1 Modeling Delay based Control
	2.2 Discrete-time Markov Model States
	2.3 Deriving the MDI Transition Matrix
	2.4 Model Training Methodology
	2.5 MDI Implementation

	3 Evaluation
	4 Related Work
	5 Discussion: Why MDI?
	5.1 Visualizing Protocols
	5.2 Convergence
	5.3 Drop-in replacement for CC protocols

	6 Conclusions
	References

