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ABSTRACT
The increasing complexity of the web has attracted a number of
solutions to offer optimized versions of web pages that are lighter
to process and faster to load. These solutions have been quantita-
tively evaluated to show significant speed-ups in load times and/or
considerable savings in bandwidth/memory consumption. However,
while these solutions often produce optimized versions from existing
pages, they rarely evaluate the impact of their optimizations on the
original content and functionality. Additionally, due to the lack of
a unified metric to evaluate the similarity of the pages generated
by these solutions in comparison to the original pages, it is not yet
possible to fairly compare the results obtained from different user
studies campaigns, unless recruiting the exact same users, which
is extremely challenging. In this paper, we demonstrate the lack
of qualitative evaluation metrics, and propose QLUE (QuaLitative
Uniform Evaluation), a tool that automates the qualitative evaluation
of web pages generated by web complexity solutions with respect
to their original versions using computer vision. QLUE evaluates
the content and the functionality of these pages separately using
two metrics: QLUE’s Structural Similarity, to assess the former, and
QLUE’s Functional Similarity to assess the latter—a task that is
proven to be challenging for humans given the complex functional
dependencies in modern pages. Our results show that QLUE com-
putes comparable content and functional scores to those provided
by humans. Specifically, 90% of 100 selected pages were given a
similarity score between 90% and 100% by the human evaluators,
while QLUE shows similar scores for more than 75% of the same
pages. QLUE’s time complexity results show that it is capable of
generating the scores for the same set of pages in a matter of few
minutes.

CCS CONCEPTS
• Information systems → World Wide Web; • Computing method-
ologies → Computer vision.
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1 INTRODUCTION
The complexity of the World Wide Web (WWW) has been signif-
icantly increased during the last decade [33], resulting in a poor
browsing experience [22] for millions of users [11] who rely on
slow connections and low-end smartphone devices [3, 6, 7, 9, 10]
to access the web. To address the web complexity and the poor
browsing experience, several promising solutions have been pro-
posed [15, 19, 26, 33, 38–40, 43, 45–47]. These solutions constitute
a promising step towards realizing the United Nations’ vision to
ensure that digital technologies provide equitable opportunities for
all people across the globe [4].

Web complexity solutions often generate optimized versions from
existing pages, which are faster to be processed and loaded by mobile
browsers. While the optimizations made by the web complexity
solutions can impact the original content and functionality found
in the original pages either marginally or drastically, the loss in the
content and the functionality is either evaluated by small-scaled user
studies [19, 33, 38], or not evaluated at all. This can be explained by
the: lack of tools to evaluate this loss, and challenges of conducting
large-scaled user studies including financial and logistic constraints.

In this paper, we propose QLUE (QuaLitative Uniform Evalu-
ation); a computer-vision tool to automatically assess the loss in
the pages generated by web complexity solutions with respect to
the corresponding original web pages. QLUE aims to speed up the
development cycles of web complexity solutions, by providing a
rapid evaluation through two standardized qualitative scores, namely
QLUE Structural Similarity (QSS) and the QLUE Functional Sim-
ilarity (QFS), to assess the content and functionality of the pages
generated by these solutions in comparison to the original. QLUE
emulates the human perception of the pages’ content similarity and
the human behavior assessing the interactive features of web pages.

QLUE fills a crucial gap in today’s literature by providing a uni-
form scoring metrics allowing researchers to systematically evaluate
the pages generated by their solutions against the original versions
and the pages created by other solutions. Many of today’s human
evaluation strategies are neither standardized nor validated [49],
making a fair comparative analysis among different user studies
nearly impossible. To the best of our knowledge, QLUE is the first
attempt to assess the web pages generated by web complexity solu-
tions through a unified and standardized metrics. QLUE can be used
in a standalone mode, with the flexibility of being integrated into
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Table 1: Evaluation metrics used in web complexity state-of-the-art solutions

Solution Evaluation metrics The impact on the page content/functionality
SpeedReader [26] Data Size, Memory Consumption, Page Load Time Not evaluated

WProf [45] Page Load Time Not evaluated
Shandian [46] Page Load Time, Page Size Not evaluated
Polaris [39] Page Load Time Not evaluated
Vroom [43] Page Load Time, Above the fold Time, SpeedIndex Not evaluated

Prophecy [40] Page Load Time, Bandwidth, Energy, SpeedIndex, ReadyIndex Not evalauted
Flywheel [15] Page Load Time, Time to first byte, Time to first paint, Page Size Not required

BrowseLite [33] Bandwidth Saving, Page Size, Speed Index User Study, Visual Completeness
JSCleaner [19] Page Load Time User Study

Web Medic [38] Memory consumption User Study

existing tools, in an automated manner with minor user intervention,
supporting both desktop and mobile versions of web pages.

QLUE is evaluated by comparing the similarity scores it computes
for 100 popular web pages to the scores given by 30 human evalua-
tors who participated in a user study. These pages were taken from
Alexa top million sites [12] and simplified using a state-of-the-art
web acceleration solution, namely SlimWeb [18]. Results show that
QLUE exhibits similar trends in the overall similarity scores com-
pared to the user study for both QSS and QFS. Specifically, QLUE
achieves a QSS score of ≥ 90% for more than 70% of the pages in
contrast to 90% of the pages in case of human evaluation. While sim-
ilar results are shown in terms of the QFS, a slightly wider gap can
be seen between the scores generated by QLUE and the scores given
by the human participants. These results can be explained by the
systematic rules of QLUE in penalizing the score for every missing
component in a given web page (regardless of its size or relevance).
These rules make QLUE less forgiving in comparison to humans.
In fact, QLUE’s scores provide a lower bound for a potential user
study. The paper’s main contributions are:
• QLUE; A novel uniform unbiased computer-vision approach to

evaluate the quality of web pages generated by web complexity
solutions , using two scoring metrics: QSS and QFS.

• An evaluation of the QSS /QFS scores of 100 pages in comparison
to scores given by 30 human participants of the user study.

• A time complexity evaluation of QLUE’s in terms of structural
similarity processing and QFS computation.

2 MOTIVATION
Over the past decade, several solutions are proposed to tackle the
web complexity problem from both the industry and academia stand-
points. These solutions either block or modify the pages’ contents to
offer faster/smaller-sized pages, pre-process the pages by offloading
complex processing tasks from the browser to a proxy, or restructure
the page load process to avoid bottlenecks at the client [45].

More specifically, blocking solutions are often deployed in a
from of a browser [1, 5, 41] or in-browser extension [13, 14, 16, 23,
32, 42]. For example, Brave [5] was recently released as a mobile
browser with built-in ad-blocking features, while Percival [13] ex-
tends Google Chrome and Brave to block ads using deep learning.
In the case of Opera Mini [41] browser, a proxy server renders web
pages before sending them to the users. In contrast, JSCleaner [19]
offers a proxy-based solution to block non-critical JavaScript in mo-
bile pages to reduce the processing burdens imposed on low-end mo-
bile devices. To offer simplified versions of existing pages, Facebook-
Lite eliminates the secondary features of Facebook [25], whereas

SpeedReader [26] converts pages that are suitable for the reader-
mode into simpler reader-friendly pages. In a recent work [38], the
authors proposed to eliminate less-useful functions from web page
to improve the memory consumption on low-end devices. To save
the users’ data plans, Flywheel [15] compresses responses between
the servers and the browsers, while BrowseLite [33] applies dif-
ferent image compression techniques. To accelerate mobile pages
without blocking any of their original content, both Shandian [46]
and Prophecy [40] pre-process web pages on a server and then send
modified versions to the users’ browsers, while Polaris [39] modifies
the sequence in which the different page components are loaded.

As such, web complexity solutions often generate modified ver-
sions from existing pages, where the original content and/or func-
tionality might be sacrificed due to optimizations in resources and/or
processes. Thus, a structural and a functional assessment of the
generated pages is crucial to ensure the similarity of these pages
to their original versions. However, this assessment is either ig-
nored [26, 39, 40, 43, 46] or evaluated with small-scaled user stud-
ies [19, 33] due to the challenges of conducting large scale user
studies and the lack of alternative evaluation scenarios. For example,
in SpeedReader [26], the authors noted that they did not attempt any
user evaluation on the quality of their generated pages, and left a
deployment plan with subjective presentation evaluation for future
work. While SpeedReader cannot handle around 78% of web pages
[2] (since it never fetches or executes JavaScript), we believe that a
comprehensive large-scale analysis on the impact of SpeedReader on
the pages content and functionality can help in covering a larger por-
tion of pages. Similarly, and despite significant speedups, the impact
of pre-processing in Shandian [46] and Prophecy [40] on the page
structure and functionality have not been evaluated. Table 1 provides
a comparison of the metrics used to evaluate web complexity solu-
tions, with a note on the evaluation of the aforementioned impact.
The table highlights the lack of such an evaluation in many of the
web complexity solutions apart from a few, where small-scaled user
studies are conducted. This motivates the need for a uniform and
rapid evaluation for the content and functionality of the pages.

3 RELATED WORK
With the rapid development of web complexity solutions, existing
tools assist developers in evaluating their pages in terms of timing
and/or saving gains. For instance, Lighthouse [8] tool runs in Chrome
DevTools to generate an evaluation report for a given page and how
to improve its timing performance. Similarly, Browsertime [34] col-
lects timing metrics and records a video of the browser screen to
calculate visual metrics such as Speed Index. A common framework
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to assist web developers in creating light-weight pages is Google’s
Accelerated Mobile Pages (AMP) [27]. To compare the performance
of an AMP page to the corresponding non-AMP page, a manual eval-
uation is expected [28]. Instead of creating new accelerated pages,
developers commonly seek to reuse features in existing pages. In
Ply [35, 36], a CSS inspection tool is proposed to assist developers
in replicating visual features of existing complex pages. To automat-
ically identify irrelevant properties of elements in these pages, Ply
disables a given property, captures a screenshot of the resulting page
and compares it to a reference screenshot with all properties enabled.
It uses a simple pixel-level screenshot comparison to compute the
visual regression between screenshots and remove the property with
no visual impact. Unlike QLUE, Ply doesn’t consider interactive
features driven by JavaScript.

Other developer tools [20, 24, 30, 37, 48] focus on debugging
and tracking code snippets in web pages, or reproducing interactive
content from existing pages. For instance, Chrome DevTools are
extended in Unravel [30] to support reverse engineering of complex
pages, by enabling developers to track and visualize both: page
changes and JavaScript function calls. On the other hand, Fusion [48]
allows to borrow functionalities from existing pages, by extracting
components from these pages and turning them into self-contained
widgets that can be embedded into other pages. In [20], a simple
markup language is combined with reactive components to reduce
the effort needed to produce interactive documents. In comparison
to QLUE, these tools assume the intention of reusing content on
different pages, while QLUE aims to assist developers who intended
to provide alternative pages that accommodate the needs of users
relying on handheld mobile devices to access the web.

4 DESIGN CONSIDERATIONS
QLUE aims to evaluate the content and the functionality of web
pages generated by different web complexity solutions—referred to
as the Modified pages, in comparison to their original counterpart
pages—referred to as the Reference pages. QLUE introduces two
metrics to evaluate a given modified page: content completeness,
which we refer to as QLUE Structural Similarity QSS, and the degree
to which the interactivity and the functional features are retained,
which we refer to as QLUE Functional Similarity QFS.
Uniformly evaluate the impact of web complexity solutions on
the page content and functionality: To provide either an alternative
when a user study is challenging, or a rapid evaluation prior to
an assessment with real users, QLUE systematically emulates the
human behavior in evaluating the similarity of the modified pages in
comparison to their corresponding reference pages using computer
vision. Since the impact of web complexity solutions can be seen
either in the content/structure or the functionality of the modified
page, the two aforementioned metrics are introduced to assess each
aspect of this impact in 0-100% similarity score.
Emulate human perception of the content similarity: QLUE
emulates human perception when assessing the similarity of a given
web page, by searching for missing components and penalizing the
score based on the importance of these components. The importance
of a given component is approximated by measuring the area it
occupies in the page to reflect the human’s behavior in penalizing
large missing components while overlooking small missing ones.

Achieve accurate QSS scores: A direct comparison to assess the
QSS of a modified web page with respect to a reference page might
not yield an accurate score. This is because the modified page may
lack a number of elements affecting the position of other elements
within the page (given the dynamic nature of HTML that reorders
the components based on their relative positions). Figure 1 shows
two examples of how openCV’s Structural Similarity Index Measure
(SSIM) fails in providing an accurate similarity score. In the first ex-
ample, due to a missing banner, the modified version of the page has
shifted the subsequent elements following the missing banner. As re-
sult, SSIM reported a 61% similarity between the two pages (which
is not accurate given that both pages look almost identical apart from
the missing banner). On the other hand, the second example shows
two different screenshots of different pages (where the modified ver-
sion is not created from the same reference page), however the SSIM
method reported a similarity score of 69% even though the elements
within the pages are completely different (due to the large number of
background pixels that match between the two pages). To handle this
inaccuracy, QLUE breaks the pages into several components while
eliminating the background pixels (Sec. 5.1.2). The score is then
computed by matching these components individually (Sec. 5.1.3).
It attempts to match each component in the reference page with a
distinct component in the modified page.

Reference Page .PEJmFE�1BHF Reference Page .PEJmFE�1BHF

(a) 61% SSIM similarity score, while
intuitively a higher score is expected
given that the pages look very similar

Reference Page .PEJmFE�1BHF Reference Page .PEJmFE�1BHF

(b) 69% SSIM similarity score, while
intuitively a score of 0% is expected
given that the pages are different

Figure 1: OpenCV’s SSIM failure examples computing the score

Identify page’s individual components: QLUE aims to break a
given page into individual components to achieve accurate similarity
score. Using existing filters (such has OpenCV’s threshold filter), an
image with several objects is not taken as one single component, but
split into a number of separate components according to the embed-
ded objects. To identify individual components and their locations
within the page, QLUE aims to consider the entire images, since the
modified page either maintains an entire given image or not (there
won’t be a case where only a subset of the image is retained within
the modified page). To this end, QLUE uses a custom threshold filter
(Sec.5.1.1). Figure 2 shows an example comparing the outcome of
OpenCV’s adaptive threshold filter to QLUE’s custom filter.
Handle dependent events in assessing the QFS: A dependent event
can be defined as an event that cannot be triggered unless a set of one
or more prior events are triggered. For example, a sub-menu item can
be clicked only when the icon of the main menu is first clicked, and
then the corresponding menu item is clicked afterwords. The chances
of dependent events increases as the interactivity of a given web
page is increased. While some of these events might not be easily
identified by a human evaluator—since they are hidden under a
number of consecutive dependant events, QLUE utilizes a computer
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(a) Original screenshot (b) OpenCV’s adaptive
threshold filter

(c) QLUE’s custom
threshold filter

Figure 2: An Example showing the impact of two different
threshold filters on the same original screenshot.

bot that interacts with all the functional elements of the page to
assess the missing functionality. The bot effectively considers a full
set of dependent events in a given page, by automatically extracting
a complete list of event-listeners and then triggering each of them.

5 THE DESIGN OF QLUE
5.1 QSS Assessment
The QSS assessment aims to compute a score that describes the
level of content similarity in the modified page in comparison to a
reference page. To compute the score, the QSS goes over various
processes: i) screenshots generation and processing, ii) components
extraction, iii) components matching, and finally iv) computing the
score. Figure 3 shows a high-level architecture of QSS computation.
A step-by-step walk-through example of the QLUE’s structural simi-
larity evaluation is provided in Appendix C, where Wikipedia mobile
page is selected to highlight the impact of the individual processes.

Screenshot Generation
and Processing

Components Extraction

Take a full page screenshots for 
both variants (Reference & Modified)

Find groups of connected pixels.

Dilate these groups of 
connected pixels.

Pass array through
adaptive threshold 

filter.

3 Dimensional
Image Array

2 dimensional 
output array

Find disconnected pixel islands.

Crop each component from the 
original 3D array and save it.

1 1 1 1 1 1 1

1 1 1 1 2 1 1
1

1 1 1 1 2 1 1
3 1 1 1 1 1 1
3 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1
1

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Components Matching

Search for the components from the 
reference page in the modified using 

Image Integrals.

Component 
Score = 1

Component score is set by the 
average of OpenCV`s SSIM and 

mean squared error.

Component
Found?

yes

no

Computing the Score

The score is calculated by taking 
anaverage of components' scores 

weighted by their areas.

solid
colored

background
? yes

no

Replace background pixels
in the array with 0 and 

foreground pixels with 1.

Figure 3: QSS Evaluation

5.1.1 Screenshots Generation and Processing. To compute the struc-
tural similarity, QLUE first requires to generate a screenshot for both
the modified and the reference page. A screenshots for a given page
is generated after the page is requested and completely loaded by
the browser. To generate a full screenshot of the entire page, the
screenshot generator scrolls down till the end of the page when the
part of the page that is visible on the screen does not represent the
entire page. Screenshots are represented as images in the form of
3D arrays: the first two dimensions are the X and Y coordinates for

the image pixels and the 3rd dimension is the color space (pixel’s
RGB). In order to find the interconnectedness of the pixels and to
speedup the computation, we transform the 3D-array images into
black-and-white 2D binary arrays with 0’s representing the absence
of components and 1’s representing the presence of components.

After generating a screenshot, QLUE identifies the background
color of the corresponding page by reading the Document Object
Model (DOM) property document.body.style.backgroundColor and
comparing it with the most frequent pixel-color on the page—given
that web pages can have an additional gradient background or an
image background that overlays the background color. If different,
the image is run through OpenCV’s adaptive threshold filter. Other-
wise, the image is run through QLUE’s custom threshold filter that
replaces background pixels with 0’s and foreground pixles with 1’s.
The reason of not using OpenCV’s filter in case the background color
matches the most frequent pixel-color is to avoid breaking images
into several sub-components, which increases the time complexity.

5.1.2 Components Extraction. At this phase, the screenshots for
both the modified and the reference page are transformed into sep-
arate 2D binary arrays. The next step is to split each array into
a number of separate components. To overcome the limitation of
direct comparison (explained in Sec. 4), QLUE breaks the pages
into several components while eliminating the background pixels.
The score can then be computed by matching these components
individually (see Sec. 5.1.3). To identify the individual components,
QLUE searches within the 2D array for groups of connected pixels
(adjacent 1s in the array without 0s in between), we refer to these
groups as islands. These islands can represent large elements such
as images, or small elements such as alphabets in a sentence. For
many of the small close-by islands, QLUE merges them into a larger
island for two main reasons: i) to minimize the number of separate
islands in the reference page, so that the time to search for them in
the modified page is minimized, and b) to correlate repeated islands
to their corresponding components. More specifically, islands that
often repeat in a page (such as alphabets) are required to form a
unique combination (such as a sentence or a paragraph island), to
avoid false matches due to the presence of repetitive smaller islands,
and ensure that the missing components are correctly penalized.

Figure 4: Dilation on a textual paragraph. The text in green is
displayed for illustrative purposes highlighting the dilated pixels.

To join the small islands together, QLUE uses OpenCV’s dilation
function to dilate these pixel islands. Pixel Dilation is a morphologi-
cal operation that traverses through the binary array and replaces all
the 0s with 1s if one of the neighboring pixels is 1. Figure 4 shows an
example of the dilation process over a textual paragraph, where the
bounds of the neighborhood can be changed by modifying the kernel
size. For example, for a kernel size of 2,2, the 2x2 squares around
the pixel in question will be checked. For QLUE, it is crucial to have
a kernel size that captures islands in a way that avoids considering
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the entire screenshot as a single island or considering every alphabet
as an island (see Figure 5 on the impact of the kernel size). The
initial kernel size values are set by multiplying a constant with the
ratio of the foreground and the background pixels in both the x and
y directions. This constant depends on the type of the web page
(mobile or desktop) and the display screen resolution. The initial
value, K of the kernel is defined as:

K =
(
Kx,Ky

)
=

{
Kx =

C
numRows

numRows
i=1

δi
γiδi

Ky =
C

numCols
numCols
i=1

δi
γiδi

(1)

where δ is the number of pixels with value 0 at the ith row or
column (depending on whether we are computing kx or ky), and γ is
the number of pixels with value 1 at the ith row or column (depending
on whether we are computing kx or ky), and C is a constant that
inflates the probability of zero pixel into a larger dilation factor. C is
set to 15, which means that when the probability of the zero pixel per
screenshot is low (when the page is dense in components), the kernel
size would be around 1 to 2 pixels. On the other-hand, when the
latter probability is high (when the page is sparse in components),
the kernel size would be set to a higher value not exceeding C.

After the initial value of K is computed for a given page using
the above formula, QLUE dilates the pixel of the screenshot and
computes the number of islands (disconnected components) using
openCV’s connected components method (see Figure 3 green pro-
cess, where the pixels of each connected component are labeled with
a unique number from 1 to N). Based on an analysis of 100 modern
web pages, we discovered that the average number of components
per page varies in area between 4000 and 12000 pixels. To verify the
initial value of our kernel K, we compare the number of components
computed earlier with the theoretical upper and lower bounds, by
dividing the screenshot area by both bounds of the average com-
ponent area. That is

⌊(
x× y

)
/12000

⌋
and

⌊(
x× y

)
/4000

⌋
, where x

and y are the width and height of the 2D array. If the number of com-
ponents is outside this range, the kernel size will be automatically
tweaked depending on whether the number of components is lower
or higher than the range. In case it is lower it suggests that the kernel
size is larger than required and should be reduced, whereas it should
be increased if the number of components exceeds the upper range.
This kernel size is automatically increase/decreased by 1 pixel in
each iteration and the dilation process is performed again until the
number of components is within the range.

Kernel size (0,0) Kernel size (3,3) Kernel size (8,8) Kernel size (15,15)
Components: 54 Components: 16 Components: 6 Components: 1

Figure 5: The impact of different kernel size on pixels dilation

Next, each of the components is grouped into a single island. Once
the number of components is computed and within the range, the
bounding box of each component is computed by finding the mini-
mum and maximum x and y coordinates across all pixels of that com-
ponent, i.e. xmin,ymin,xmax,ymin,xmin,ymax,xmax,ymax. QLUE stores

the coordinates of each component, and uses them to extract the
components images by cropping the original 3D array at the same
coordinates of the bounding boxes. Figure 6 shows how the bounding
boxes overlay over both the reference and the modified screenshots.

Then, each of the pixels islands is identified, and each bounding-
box is determined, where QLUE crops the components’ images
of the reference page’s screenshot. All of the above steps are first
applied on the reference page and then on the modified page. The
outcome is a set of images for each page representing individual
components in these pages and serving as the basis for components
matching between the reference and the modified page.

Reference Page Modified Page

Figure 6: QLUE’s components matching example, where green
boxes highlight the fully matched components, and the red boxes
highlight the missing components of the modified page

5.1.3 Components Matching. At this phase, QLUE has extracted all
the individual components from both the reference and the modified
pages in the form of images cropped from the 3D arrays of the
reference and modified screenshots. These components are matched
to identify which components are missing in the modified page. To
achieve this goal, QLUE utilizes an image search algorithm called
the image integrals [21] to match each component in the reference
page with a component in the modified page.

For every successfully matched component, QLUE assigns a
full similarity score of 100%. Figure 6 shows an example of the
matched components, highlighted by the green bounded-boxes. For
the components that are not found in the modified page, QLUE
uses OpenCV’s similarity index and the mean squared error for
each of the unmatched components from the reference page against
each similarly-sized unmatched components from the modified page.
Then, for a given unmatched component in the reference page, the
component from the modified page with the highest score is con-
sidered a partial match with the score obtained from OpenCV’s
similarity index which ranges between 0 - 100%. For a given refer-
ence page’s component with no match in the corresponding modified
page (verified when QLUE runs out of components without exact or
partial matches), a score of 0% is assigned (see the components with
red bounded-boxes in Figure 6 for an example of unmatched com-
ponents). The output of components matching is a list of matched
components, each with an individual score between 0 - 100%.

Finally, QLUE iterates over all identified components in the refer-
ence page and searches for possible matches in the modified page.
There will be three different categories of components: a) com-
ponents that are fully matched with a score of 100%, b) partially
matched components, and c) missing components with a 0% score.
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5.1.4 Computing the Final Score. The individual scores computed
in the precious step for each component in the reference page are
combined into a unique value to represent the overall page QSS score.
Since humans tend to forgive or overlook smaller components and
penalize larger components, QLUE averages the scores weighing
each component’s score by its relative area (scores are multiplied
by the area of each component and divided by the overall area of all
components) to emulate human’s perception of the pages similarity,
where components contribute to the score in a proportion relative to
their area. The QSS has a value between 0-100%, is computed as:

QSS Score =
ΣC

i=0ai × si

ΣC
i=0ai

(2)

where C is the number of components, si is the score of the
component i, and ai is the area of component i. A score of 100%
affirms that the modified page is identical to the reference page.

5.2 QFS Assessment
This assessment refers to evaluating the modified page in terms of re-
taining the functional elements found in the corresponding reference
page along with their proper interactivity features. For example, a
drop-down interactive menu found in a reference page should exist
and function properly in the corresponding modified page. To com-
pute the QFS score, the user interactivity events are emulated through
an interaction bot, by extracting all of the event listeners from both
the reference and the modified page, triggering each event in each
page, and capturing a screenshot whenever an event is triggered.
Then, the QFS score is computed based on the retained functionality
in the modified page with respect to the reference page.

5.2.1 Emulating User Interactivity. To emulate the user interactivity,
QLUE leverages the browser’s built-in functionality to identify all
the event listeners in the reference page, and map each of them to
their corresponding page element (such as mapping a click event
to the corresponding menu element). These events have various
forms including but not limited to: mousedown, mouseup, mouseover,
mouseout, keydown, keypress, keyup, dblclick, drag, and dragend.

Page elements are identified using their XPaths to facilitate navi-
gating through a given web page and accessing all elements and their
attributes to construct an event-dependency graph, such that a group
of dependent events can be triggered in a given order. For example,
an event that closes a menu cannot be triggered unless the open event
corresponding to that menu is triggered first. In the HTML docu-
ment of a given web page, elements are structured using < div >
tags, where each tag has a unique “id”, with a potential reference
to a “class” of attributes from the accompanying Cascading Styling
Sheets (CSS). QLUE constructs the XPath of an element using the
nearest parent with an “id” or “class” as the root. Position-based
indexing is then used to identify descendants. For elements with no
ancestor with an “id” or “class” attribute, the “body” element is used
as the root, while position-based indexing is initiated from the body.

When the events of a given reference page are identified and
mapped to the corresponding page elements, they are traversed in
a depth-first order. An automated browser environment is used to
trigger each event associated with a given element. Triggering an
event often leads to changes in the page appearance (see a sample

(a) Reference page (b) Search bar click event (c) Options clicked

(d) “Sort” button clicked(e) “New” button clicked (f) “View” button clicked

(g) “Login” button
clicked

(h) External page when a
headline is clicked

(i) “Newsfeed” item
clicked

Figure 7: Interaction bot triggering different event listeners.

(a) Screenshot before any event is
triggered

(b) Screenshot after a hover event
is triggered

(c) The subtraction of images in
both (a) and (b)

(d) Identified affected region
based on the triggered event

Figure 8: An example of an interactive functional element, corre-
sponding to a hover event-listener triggering a drop-down menu

snapshot of a hover event over a drop-down menu in Figure 8). To
assess if the original functionalities of the reference page are retained
in the modified page, a screenshot is captured and stored whenever
an event is triggered in the reference page (see examples of such
events in Figure 7). To increase the efficiency of the QFS assessment,
any screenshot that renders no visible change—in comparison to
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the master screenshot of the page captured without any event being
triggered—is not stored. This is confirmed by a pixel-by-pixel com-
parison, such that an event that does not change the appearance of the
page is dropped from the list of events. For a given triggered event,
QLUE saves only the area of the page that shows a visual change in
comparison to the master screenshot. The final set of event listeners
identified in the reference page along with their screenshots showing
their impact are used to assess the functionality in the modified page,
by searching for each of them in the modified page. If an event is
found, it is triggered and a screenshot is captured. The output of
the user interactivity emulation is a set of screenshots for each page
representing the impact of each event on the page.

5.2.2 Computing the Score. QLUE iterates over all events screen-
shots captured for the reference page, and compares each of them
to its counterpart screenshot captured for the modified page. QLUE
has two different approaches when comparing these screenshots:
a) using the same considered QSS approach (Sec. 5.1, or b) using
openCV’s SSIM method for a quick similarity score computation.
The choice between the two is left for the user, since this strikes a
trade-off between computation accuracy and performance. Specifi-
cally, the former option is more accurate while the latter is tentatively
faster but less accurate (Sec. 4 and the examples shown in Figure 1).
However, in the case of an event screenshot, the possibility of having
a missing element is rare, given that the functionality of the element
associated with that event is either fully retained or completely miss-
ing. An event that exists in the reference page but not found in the
corresponding modified page is given a score of zero. On the other-
hand, for a matched event, a score between 0 and 1 is computed
to assess the similarity of the screenshot captured when that event
is triggered in the modified page with respect to the corresponding
screenshot captured when the same event is triggered in the reference
page (using image subtraction). The average of the scores given to
each of the events is computed to represent the overall QFS score of
the modified page. The functions of a page are considered equally
important and no weights are assigned to different events types.

6 IMPLEMENTATION
QSS Implementation: QLUE provides a flexible approach with
three modes of operation depending on the source of the pages:
• Proxy mode: here, the users configure QLUE with two different

proxies, one serving the reference pages, while the other serves
the modified one. The use of proxies is a common approach for
many of the web acceleration solutions, where the developer cache
cloned versions of these pages to guarantee reproducible results.

• URL mode: in this mode, QLUE can be used to evaluate live web
pages against each other without the need for caching. An example
of this mode can be evaluating live production web pages where
web developers host two different live versions of the same page.

• Screenshots mode: this mode is used to directly provide the pages
screenshots (i.e., reference and modified). In contrast to the above
two approaches, where QLUE generates the screenshots internally.
For the screenshot generation, QLUE uses Selenium Chrome Web-

driver [31], where depending on the need of the users, their solution,
and their selected mode, QLUE can be configured to either emulate
a desktop or a mobile phone chrome browser when generating the
screenshots (valid for the first two modes of operation). It also runs

as a headless browser, and automatically scrolls through the entire
page in an iterative manner while waiting in each iteration for the
content to be fully displayed. The maximum number of iterations
is configurable (and is set to 20 iterations by default). This number
is introduced, given that certain web pages can virtually display
endless content when scrolling. Then these screenshot are passed
to the: pixel dilation, components extraction, components matching,
and computing the final score. These are all implemented in Python
using openCV [17], Scikit-Image [44], and numPy [29]. Users can
run several parallel instances to speedup the evaluations.
QFS Implementation: The QFS implementation has two main
modules: an interactivity bot, and a score generation module. The
interactivity bot emulates user actions on the web page by first
extracting all the event-listeners from the DOM structure of the page.
Given that all of the pages interactivity/functionality are triggered
using an event-listener. The interactivity bot is implemented in Java,
relying on Selenium. The bot can operate in two modes : Proxy
mode, and URL mode. The score generation module is implemented
in Python. The initial comparison to see if the events rendered any
change, image subtraction, and image matching are performed using
openCV [17] and Scikit-Image [44]. QLUE’s source-code can be
found under https://github.com/comnetsAD/QLUE.

7 EVALUATIONS
7.1 User Study
To evaluate the effectiveness of QLUE on how well it emulates the
human perception when comparing web pages against each other,
we conducted a user study with 30 participants to compare 100 mod-
ified web pages created using SlimWeb [18] with respect to their
original pages. We split the pages among participants, and asked
each to evaluate 20 unique pages (each page evaluated by 6 partici-
pants). Participants were recruited from an international University
who browse the web on a daily basis, without any assumptions on
their web development experience. They were trained to manually
evaluate the quality of the pages with respect to the original pages in
terms of content completeness and retained functionality. We met
with each participant online to explain the task and the evaluation
tool in a 5-10-minute Zoom session. We also allow participants to
ask questions about how to use the evaluation tool, but we did not
share any evaluation expectations or details on the percentage of pe-
nalization they should consider for missing content or functionality.

7.1.1 Evaluation Tool and Metrics. We designed an evaluation tool
that automatically picks a URL from the list of URLs that a partici-
pant is supposed to assess, and displays two pages side-by-side (the
reference and the modified) in two instances of Chrome browser. The
first browser connects to a proxy serving the reference pages, and the
second browser connects to another proxy serving modified pages.
We used proxy servers to serve the same cloned versions of pages
for all users (to avoid the page regular updates over time). The evalu-
ation tool randomly selects a web page and asks the user to compare
the two versions and fill a form with the following considerations:

• Human perceived content similarity score: where a participant
rates hers/his perceived content similarity of the modified page
in comparison to the reference page using a slider with a 0-to-10
scale. A score of 0 is interpreted as the two pages being completely

https://github.com/comnetsAD/QLUE
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different, whereas a score of 10 means that the two pages are
identical. A score between 0 and 10 refers to a partial similarity.

• Human perceived functional similarity score: measures the par-
ticipant’s perceived similarity of the modified page compared to
the reference page from the functional completeness perspective.
Participants are asked to rate their perceived functionality score
in a 0-to-10 scale by manually assessing the modified page in
terms of the presence as well as the operation of all functional
elements found in the reference page, such as: interactive menus,
navigational elements, search bars, and image scrollers, etc.

7.1.2 Evaluation Results. Figure 9 shows the histograms and the
cumulative distribution functions (CDFs) of the structural similarity
(Figure 9a) and the functional (Figure 9b) of the modified pages
in comparison to the corresponding reference pages for both the
user study and QLUE. The results shown in Figure 9a compares
the automated structural similarity of QLUE (the light blue curve)
to the manual human perceived structural similarity (the dark blue
curve). The figure represents the scores given by the participant as
percentages. The user study results show that for 90% of the pages,
the participants gave a score ≥ 90%, whereas for the rest of the
10% of the pages, almost all (with the exception of two outliers)
have a score ≥ 80%. In comparison, QLUE results show more con-
servative scores, where 75% of the pages have a score of ≥ 90%,
while the rest (apart from 3 outliers) scores between 75%-90%. This
highlights that QLUE is less forgiving than the human evaluators,
evident by the smooth and gradual increase of the scores. This can
be explained by the fact that QLUE systematic rules in penalizing
the score for every missing component no matter how small it is,
or how important is the component to the page main content. In
summary, QSS score can be considered as the lower bound of the
page structural evaluation. Similar observations to the above can
be viewed in QLUE’s functional comparison shown in Figure 9b.
QLUE scores follow a similar trend to the scores given by human
evaluators with slightly lower values. This can be explained by the
fact that human evaluators tend to overlook minute differences, and
that they are more forgiving in their assessment when major elements
in the two pages are matching. In addition, human evaluators tend
to miss evaluating certain functional elements, especially when they
are triggered after triggering a series of previous dependant events.
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Figure 9: QLUE vs. human evaluation results

7.2 Time Complexity
To evaluate QLUE’s time complexity, we compared the different
timing metrics on per-process basis, using the same 100 pages con-
sidered in the user study. These metrics represent the timings of

time-consuming processes in computing the QSS score: threshold
filter, components extraction, components matching, and QSS total
time. Figure 10a shows the CDFs of the QLUE’s timing metrics
measured in seconds, whereas Figure 10b shows them as a function
of the number of a page’s components. Figure 10a shows that the
threshold filter doesn’t impact the overall time given that it is com-
pleted in a matter of milliseconds (hence the straight blue line), in
comparison to the maximum total time of around 220 seconds in the
worse case scenario. The Figure also shows that components match-
ing (highlighted in orange) is the most time-consuming process in
computing the QSS—taking around a minute at the median. In con-
trast, the components extraction process (highlighted in green) is
relatively quick, with a maximum time of around 49 seconds. To bet-
ter understand the relationship between the page complexity in terms
of the number of components it contains and the timings metrics,
we plot these metrics as a function of the number of components in
each page, shown in Figure 10b. Results reveal that the relationship
between QLUE’s overall time and the number of components in the
page follows a linear trend. Additionally, results show that the total
time required to perform the threshold filter is almost constant and
does not depend on the number of components present in a page.
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(a) QSS processing times
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(b) QSS processing times as a function
of the number of components
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Figure 10: QSS and QFS time complexity evaluation

8 CONCLUSION
In this paper, we presented QLUE, a tool that aims to provide a
unified approach for performing qualitative evaluations of web pages
using computer vision. A user study of 30 participants has shown
that QLUE computes comparable similarity scores to those provided
by humans, and effectively assesses the retainment of web pages
functionality. We envision that QLUE to used in two scenarios:
a) uniformly comparing the quality of different web complexity
solutions, b) as a built-in module within some of the aforementioned
solutions. We reached out to the WebMedic [38] authors for an
independent expert assessment (Appendix B).
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A HOW QLUE COMPARES TO HUMAN
EVALUATORS

In Figure 11, we illustrate three examples on how the QSS scores
computed by QLUE are comparable to the scores given by the
human evaluators. In Figure 11a, we show that QLUE computes
approximately the same score given by the human evaluators. The
2% reduction in QLUE’s score reflects the two missing menu ele-
ments (highlighted in red at the upper right corner of the reference
page). QLUE identifies exactly the same missing images in the refer-
ence page as the human evaluators. Similarly, Figure 11b shows that
QLUE identifies the same missing elements as the human evaluators,
however, QLUE penalize the similarity score more accurately, since
the size of the missing images spans a large area in the reference
page. The reason why human evaluators gave a higher score than
QLUE is that they attributed the missing images to advertisements
(reported as non-important missing elements in the evaluation tool).
We believe that it is crucial to consider all missing elements equally
regardless of their perceived category (e.g., advertisements) when
measuring the qualitative score of the pages modified by web com-
plexity solutions. This is because QLUE aims at providing a unified
qualitative scoring metric to compare different web complexity solu-
tions in a uniform and unbiased manner. Finally, Figure 11c shows
the comparison of the BBC.com web page. Here, QLUE reports a
similarity score that is 10% lower than the score given by the human
evaluators due to the fact that it correctly identifies many missing
navigation elements at the end of the page—that were overlooked
by the human evaluators. This example highlights how easy it is for
human evaluators to overlook many elements because it is very hard
to recognize them when they have similar structural appearance.

B AN INDEPENDENT EXPERT ASSESSMENT
ON QLUE’S USAGE

Given the specificity of QLUE, and to independently assess its
usage potential, we sought the opinion of experts in the field, mainly
authors of existing state-of-the-art web complexity solutions. Here,
we present WebMedic’s authors [38] point of view on QLUE’s
usability, not only as a final scoring mechanism of the overall page
quality, but also as part of WebMedic’s internal algorithm—to be
used for measuring the appearance metric of their page utility, instead
of relying on the simple pHash algorithm. We shared the conceptual
and technical details of QLUE with the authors offline and then
conducted an interview over zoom with one of them. Below is a
record of the interview transcript.

Question: Do you see the value of using QLUE as a module
within the WebMedic framework?

WebMedic author: “Given that QLUE can accurately identify the
user-centric importance of web page components, and by extension,
the JavaScript that interacts with the given components, QLUE can
be integrated into WebMedic as system module to automatically
identify the key JavaScript functions without the need of conducting

(a) Example with missing menus iden-
tified by QLUE are overlooked by hu-
man evaluators. Reported scores are
87% and 85% for human evaluators
and QLUE, respectively.

(b) Example showing how QLUE rec-
ognized a missing text that is missed
by the human evaluators. Reported
scores are 91% and 64% for human
evaluators and QLUE, respectively.

(c) An example showing missing navigation elements at the end of the
page that are overlooked by the human evaluators. Reported scores
are 97% and 87% for human evaluators and QLUE, respectively.

Figure 11: Three examples showing QLUE in action, illustrating
how it perceives structural similarity in comparison to humans

user studies. As web pages frequently evolve their content over time,
it can be challenging to generalize the results of user-studies from
one version to another, and QLUE can fill the gap here by providing
an alternative to user-studies that unifies the scoring approach.”

Question: To what extent do you think that QLUE can speedup
simplifying web pages using WebMedic?

WebMedic author: “The previous version of WebMedic relied
on brute-force exploration through different versions of a web page
to generate memory/utility weights. If we had the same framework,
then yes I do see some value. It can also help in speeding up the
computations, since QLUE can replace the measure of functional-
ity/appearance change for this version. We are moving away from
the brute-force approach in the next version and rely on a single run
to profile memory/utility of the web page. I see QLUE as the target
metric that can help in judging how good a certain cut was (espe-
cially from a user-perspective). Though the value of using QLUE for
generating memory/utility profiles for the JS functions is not quite
clear to me, it definitely has value for translating the utility impact
to a user-perspective number.”

Question: How would the functional comparison in QLUE im-
prove WebMedic accuracy in avoiding page breakage?

WebMedic author: “There are two cases for page breakage: a)
a JavaScript function accessing some non-existent state, e.g., f oo
defines array, bar accesses the array, and if we cut f oo without
cutting bar then the array accessed in bar no longer exists, or b)
an event listener attached to an element (e.g., button) gets removed,
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thereby breaking the button. We currently instrument JavaScript to
track every event listener added to the web page and can thereby
track if an event listener is missing. In this case QLUE can help,
since WebMedic only checks if the event listener exists or not. My
only concern is that it might be very time consuming to run for too
many pages, due to the fact that WebMedic creates JavaScript cuts
at functional level, and given that a web page might have a high
number of functions (i.e., 1000 functions or above). If we make a
different version of the web page for every missing function, we’ll
have a large number of page variants. It is definitely useful but maybe
beyond the initial operation of WebMedic, given that we have to test
on permutations of all the JavaScript functions. However, we are
on the evaluation phase of WebMedic after creating the candidate
pages, QLUE’s functional comparison will be very helpful, given
that QLUE takes it a step further from just checking if the event
listeners exist or not.”

C QSS WALK-THROUGH EXAMPLE
Figure 12 shows a step-by-step walk-through example on how QLUE
works using the Wikipedia page as an example.

D QLUE’S LIMITATIONS
Here, we show two three corner cases that represent the current limi-
tations of QLUE. The first case occurs when a web page displays
different images upon re-load. For instance, a web page that utilizes
an image slider component may display a different image every
time the page is loaded (either in the next visit or when the page is
refreshed). In this case, there is a high chance that the screenshot cap-
tured by QLUE for the modified page would have a different image
in the slider component than the image shown on the corresponding
reference page. While this difference should not penalize the QSS
score, the current implementation of QLUE does not recognize such
cases, hence, the final score will be unnecessarily impacted. An
extended version of QLUE can overcome this limitation by predict-
ing components with changeable content, such as image sliders and
advertising containers, where QLUE can take multiple screenshots
of the page in order to collect all possible images.

The second corner case that QLUE does not automatically handle
is a web page that uses a floating banner which always appears as
the user scrolls. This poses a challenge in the screenshot generation
process because the banner would appear multiple times in the full
screenshot captured for the page, unless the user fixes the banner
location to appear only at the top of the page. This can manually be
handled by checking for such case and modifying the CSS styling
of these banners before proceeding with the screenshot generation.
In our future work, we plan to extend QLUE screenshot generation
to automatically detect such floating elements and modifying their
CSS styling accordingly.

QLUE is capable of evaluating search bars functionality in web
pages, by filling the search bar with a search query and triggering
the search event. Given that the page would return a valid visual
response to the search query that QLUE can compare between the
two versions of the page (i.e., the modified and the reference page).
However, general web forms, although similar in spirit to search
bars, are not handled by the current implementation of QLUE’s
functional comparison. The reason behind this is the fact that most

(a) Step #1 Generating
Screenshots

(b) Step #2 Applying
threshold filter (the
custom filter in this

case)

(c) Step #3 Pixels
dilation

(d) Step #4
Determining the

components and their
bounding-boxes

(e) Step #5 Cropping
components

(highlighted in red)
from the screenshot of

the reference page

(f) The final outcome of
the above steps (Step #1
- Step #5) applied on the

modified page

Components 100% Matched Components 
Partially Matched

Original Page

Modified Page

Matching Score: 94%

Components 
Not Matched

(g) Step #6 Matching components obtained in (e) and (f),
showing three categories of matched components: 100%
matched (green), partially matched (blue), missing (red)

Figure 12: A walk-though step-by-step example to evaluate
QLUE’s structural similarity (QSS)

of the responses triggered by submitting a form do not necessarily
reveal whether the filled data were properly sent to the server or not
(apart from a simple thank you message that is usually displayed as
a default response).
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