
JSCleaner: De-Cluttering Mobile Webpages Through JavaScript
Cleanup

Moumena Chaqfeh
NYU Abu Dhabi
Abu Dhabi, UAE

moumena@nyu.edu

Yasir Zaki
NYU Abu Dhabi
Abu Dhabi, UAE

yasir.zaki@nyu.edu

Jacinta Hu
NYU Abu Dhabi
Abu Dhabi, UAE
jh5372@nyu.edu

Lakshmi Subramanian
New York University

NY, USA
lakshmi@cs.nyu.edu

ABSTRACT
A significant fraction of the World Wide Web suffers from the ex-
cessive usage of JavaScript (JS). Based on an analysis of popular
webpages, we observed that a considerable number of JS elements
utilized by these pages are not essential for their visual and func-
tional features. In this paper, we propose JSCleaner, a JavaScript
de-cluttering engine that aims at simplifying webpages without
compromising their content or functionality. JSCleaner relies on a
rule-based classification algorithm that classifies JS into three main
categories: non-critical, replaceable, and critical. JSCleaner removes
non-critical JS from a webpage, translates replaceable JS elements
with their HTML outcomes, and preserves critical JS. Our quanti-
tative evaluation of 500 popular webpages shows that JSCleaner
achieves around 30% reduction in page load times coupled with
a 50% reduction in the number of requests and the page size. In
addition, our qualitative user study of 103 evaluators shows that
JSCleaner preserves 95% of the page content similarity, while main-
taining nearly 88% of the page functionality (the remaining 12% did
not have a major impact on the user browsing experience).

CCS CONCEPTS
• Information systems → World Wide Web; Information sys-
tems applications.

KEYWORDS
JavaScript, User Experience, Classification, Web Simplification
ACM Reference Format:
Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian. 2020.
JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup.
In Proceedings of The Web Conference 2020 (WWW ’20), April 20–24, 2020,
Taipei, Taiwan. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3366423.3380157

1 INTRODUCTION
According to a recent study [12], webpages that do not load in 3
seconds have the probability of losing their visitors increased to
32%. This probability is increased to 90% if a webpage does not load
in 5 seconds. However, the current status of the web indicates that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’20, April 20–24, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7023-3/20/04.
https://doi.org/10.1145/3366423.3380157

website owners are not yet carefully considering the Page Load
Time (PLT), since the average PLT for an average mobile landing
page is 22 seconds. In fact, the World Wide Web has witnessed a
significant increase in webpages’ size and complexity during the
last decade. A modern web browser is required to typically process
complex steps to load a single page including: (a) downloading
100+ objects [7]; (b) spawning 30+ network connections [10, 23]; (c)
issuing 20+ DNS requests [23]; (d) processing JavaScript [20] along
with several layers of recursive requests and HTTP redirections [7].

In trying to investigate the different factors that are affecting
the overall PLT, two major factors can be distinguished: the net-
working cost of downloading the required resources, and the cost
of processing these resources. From 2011 to 2019, the average total
number of requests per page has increased by 23%, which results
in a 300% increase in the total average requests’ download size [3].
On the other hand, the dominant category in browser processing is
proven to be JavaScript (JS) [20]. Taking the CNN home page as an
example, and using the webpagetest [6], it is shown that JS requires
76.8% of the total Chrome browser processing time (assuming a
medium-end phone such as Samsung Galaxy S7).

The cost of JS is currently handled by utilizing uglifiers or inte-
grating browser extensions. With JS uglifiers, the size of JS files can
be reduced to enhance the transmission efficiency, but the browser
is forced to interpret the entire JS, thus sacrificing performance.
On the other hand, the integration of a JS blocker as a browser
extension can significantly reduce the cost of JS, either by blocking
specific domain names or by disabling JS for a given host. The draw-
back in this case is that JS filename, domain name or host URL has
to be explicitly specified by the user. There exist some extensions
that aim to block a specific class of JS, such as Ad-Blockers. These
blockers rely on a predefined list of domain names, which might
be periodically updated. The limitation here is that there is no way
of automatic classification for unknown JS.

In this paper, we micro-analyzed 500 popular webpages and
quantified the types of JS they use. We identified that about 38%
of the used JS are non-essential to the overall page aesthetics or
functionality. We observed that another 26% of the used scripts can
simply be translated directly to HTML, without having the end-user
incurs the extra cost of downloading and processing these scripts.
Inspired by these findings, we designed JSCleaner, a JS cleanup
engine that aims at simplifying modern webpages by optimizing
the JS usage. In contrast to other state-of-the-art approaches that
eliminate the use of JS, block a list of known scripts, or redesign
webpages from scratch, JSCleaner simplifies the use of JS in exist-
ing pages. It achieves this by selectively removing or replacing a
portion of these scripts, rather than eliminating them. JSCleaner op-
timization process relies on classifying JS into three main categories:

https://doi.org/10.1145/3366423.3380157
https://doi.org/10.1145/3366423.3380157
https://doi.org/10.1145/3366423.3380157


WWW ’20, April 20–24, 2020, Taipei, Taiwan Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian

non-critical, replaceable, and critical. Non-critical JS elements are
those that do not directly enrich the end-user browsing experi-
ence. Typical examples are tracking elements, which are added to
webpages mainly to help content providers generate revenue or
create statistics. JSCleaner aims to reduce JS cost, by preserving
only what is essential to the page content or functionality. The
classification in JSCleaner is based upon analyzing the APIs utilized
by JS to access the Document Object Model (DOM). We built an
extensive and complete set of distinct API features and mapped
each of them individually into a specific category. JSCleaner works
for both: mobile and desktop pages. However, we choose to focus
on mobile due to two main reasons. First, because mobile phones
are now popular devices to access the web. Second, mobile phones
can pose processing limitations that affect the browsing experience.
In summary, this paper makes the following key contributions:

• It presents JSCleaner as a solution to reduce the utilization
of client-side JS in modern webpages for an improved per-
formance. It is powered by a novel rule-based classification
engine that classifies JS based on 1262 distinct features.

• JSCleaner simplifies webpages and enhances the user expe-
rience without sacrificing the webpages’ content and func-
tionality. With the aid of a user study, we demonstrated that
the simplified pages have about 95% content similarity to the
original pages. In addition, about 88% of the page functional
elements were retained. The remaining 12% did not have a
major impact on the user experience since users reported a
much higher similarity to the original page, and none of the
core features were lost across any of the pages.

• Through the utilization of a diverse set of 500 popular web-
pages, we show that JSCleaner achieves a 30% reduction
in PLT across a variety of network conditions and mobile
phone types. Additionally, it reduces the number of network
requests and page size by about 50%.

2 MOTIVATION
We motivate the need for JSCleaner, by highlighting the key issues
of JS in today’s web:

2.1 Javascript imposes a huge burden on PLT
Despite that modern web browsers have been improved for faster
JS parsing and compilation, the cost of JS remains a key factor that
imposes a huge burden on PLT. In [20], the cost of JS is quantified
in example cases of popular webpages. Despite the cost of JS, an
analysis of 2275 popular webpages shows that 29 JS elements are
utilized at the 50th percentile, as shown in Table 1, whereas 72
lines of code per script are presented. Moreover, the 75% of the
population shows around 80% increase in the number of scripts per
webpage, compared to the median value. More surprisingly, the
75% shows around 1400 lines of code per script. These numbers
demonstrate the massive utilization of JS in today’s web.

2.2 JS worsens PLT in low bandwidth networks
To investigate the cost of JS in low bandwidth networks, we an-
alyzed the performance of CNN.COM (which is heavily utilizing
JS) in 2G nework settings with different phone devices using web-
pagetest [6]. Results showed that the high-end phone (iPhone 8 iOS

Table 1: JS Statistics of 2275 Poplular Webpages

Metric 25% 50% 75% Maximum

Lines Per Script 12.0 72.0 1399.75 203532
Scripts Per Page 14.0 29.0 53.0 410

12) requires 7.6 seconds for processing JS, which represented 87.4%
of the whole processing time. On the other hand, the emulated
low-end phone (Motorola Moto G4) required more than 58 seconds
for JS processing, which represented 97.4% of the browser pro-
cessing time. For bandwidth-constrained users, the increasing cost
of JS downloading combined with poor connectivity and low-end
processing are resulting in a non-interactive web experience [27].

2.3 JS might not be essential
We micro-analyzed 500 popular webpages and quantified the types
of JS elements they utilize. We identified that 38% of the used ele-
ments are non-essential to the page aesthetics or functionality. We
observed that another 26% of them can simply be translated directly
to HTML, without having the end-user incurs their downloading
and processing cost. A tracking JS is an example of a script that
is not essential to the page content or functionality. When these
tracking snippets are injected in a webpage, they track the user
activities such as the total spent time or the internal clicked links.
Despite their benefit to content providers, injecting tracking scripts
might worsen the PLT (especially for bandwidth-constrained users)
without having an essential role from the user perspective. We ex-
pect a huge benefit from removing JS elements that are not essential
to the page content or functionality, and translating the replaceable
elements with their HTML counterparts.

2.4 Existing repetitions across JS
We utilized Stanford Moss -which is a system for detecting soft-
ware Similarity- to check the similarity among different JS files
embedded on the same page. We randomly picked few cases from
the set of popular webpages, and surprisingly, we have found web-
sites where different independent JS files are almost identical. For
example, americanbar.org has four different independent JS files
with 99% similarity. Another example case is bhg.com, where two
independent JS files were found to have 92% similarity.

3 RELATEDWORK
Recently, there has been an increasing interest in the research com-
munity as well as the industry to tackle complexity issues at the
page level in today’s web. For example, SpeedReader [11] aims at
enhancing content-rich webpages that are suitable for the reader
mode of web browsers. Unfortunately, SpeedReader is not capable
of enhancing the performance of non-readable pages that utilize
JS for content generation. Wprof [24] is another in-browser tool
that acts as a profiler to provide an understanding of the key hin-
dering effects behind PLT. It builds a dependency graph between
the different browser components, and shows that JS has a consid-
erable impact on the PLT due to the role it plays in blocking HTML
parsing. To address the inefficiencies in the page loading process,



JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup WWW ’20, April 20–24, 2020, Taipei, Taiwan

Shandian [25] was proposed. It restructures the page loading pro-
cess to speed up the PLT, by preloading the page and sending an
initial DOM to the user. Although it enables faster PLTs, Shandian
keeps the entire page elements without attempting simplification.
Polaris [18] is another tool that tracks data flows during the page
load, which in turn detects additional edges compared to existing
dependency trackers. Since these edges allow for more accurate
fetch schedules, they can contribute in reducing PLT. Our work
is inspired by Polaris, where the overall PLT can be enhanced by
reducing JS complexity in modern webpages. In addition to PLT
improvement, different solutions have been proposed to improve
the user browsing experience [19]. From an industry standpoint,
both Google and Facebook have attempted to tackle today’s web
complexity through Google AMP [13] and Facebook Lite [2]. AMP
redefines how pages should be written, by providing web develop-
ers with a framework to create their webpages. A major difference
between our approach and AMP, is that we aim at simplifying what
already exists in today’s web rather than creating new webpages.
On the other hand, Facebook Lite is an application designed for
Android and iOS mobile phones, which can perform effectively on
all networks using low-end phones. In contrast to JSCleaner that
provides a generalized framework for web content simplification,
Facebook Lite is designed for Facebook applications.

Despite that JS plays a significant role in webpages performance,
and although it became one of the most popular programming lan-
guages, its practical performance was rarely examined. A recent
study [22] shows that inefficient APIs usage is the most common
cause of JS performance issues. In [8], the authors present JSEx-
plian, which is a JS reference interpreter that produces execution
traces, in order to interactively investigate these traces in a web
browser with conditional breakpoints. However, JSExplain does
not handle unspecified JS browser behaviors. In addition, its for-
malization includes only the syntactic rules, but not the parsing
rules of JS. A formal semantic parser can be found in [21], whereas
an operational JS semantic parsing is proposed in [15]. In a recent
work [26], the authors performed an empirical study for the non-
deterministic behavior of JS under certain conditions. In contrast
with [22], [8] and [26], and instead of examining the exact behavior
of JS, we propose to reduce the number of JS elements utilized
in modern webpages without sacrificing the pages’ contents and
functionalities. The desired reduction is achieved by classifying JS
elements to make a decision on preserving, removing or replacing
them with HTML. Our classification is based on detecting the DOM
APIs and the HTML DOM APIs in JS. In that sense, we provide
a web-oriented approach to understand JS functionality, with the
objective of performance and user experience improvement.

4 JSCLEANER
The main goal of JSCleaner is to enhance the web browsing expe-
rience, by transforming webpages to simpler or "lighter" versions.
The rationale behind the design of JSCleaner is to optimize JS usage
in today’s web by classifying different JS elements in webpages,
and then make a decision on preserving, translating, or eliminating
them. The optimization is achieved by utilizing a smaller portion
of JS resources that were embedded in the original pages for per-
formance improvement, while maintaining a high similarity to the

original pages in terms of content and functionality. For a webpage
to be simplified by JSCleaner, both inline and external JS elements
are required to be extracted. Inline scripts are foundwithin <script>
tags in the page HTML source, whereas external scripts are fetched
from external resources identified by the "src" attribute of the corre-
sponding <script> tag. JS extraction refers to the process of fetching
JS code. Figure 1 shows the generalized data flow diagram of JSCle-
aner, where the main processes are shown with their input/output.
As the Figure shows, a webpage of a given URL is inputted to the
script extraction process, which outputs a set of JS elements that
were embedded in the webpage. These elements are inputted to
the feature extraction process. JS code is parsed to extract a list of
features and feed a rule-based classification algorithm (4.2), which
attaches a class to each JS element based on its features. Feature
extraction and rule-based classification are aided by a feature store
(4.1). Finally, the page is tackled by a simplifier (4.3), that decides on
each JS based on its class before outputting the simplified webpage.

Simplify Webpage

URLURL

Extract JavaScript

Extract 
Features

Rule-based 
Classification

Scripts

Feature Store

Input

ScriptsScript

W
eb

pa
ge

Simplified Webpage

Input

JS Features JS Features JS Features JS Features JS Features JS Features 

Script 
Class
Script 
Class
Script 
Class
Script 
Class
Script 
Class
Script 
Class

Figure 1: JSCleaner data flow diagram

Analyzing JS with the aim of understanding their exact behavior
is a challenging and time-consuming process. The complexity of JS
might often lead experts to get puzzled by the output of a JS code
segment [8]. Thus, there is a need for a different approach that is
agnostic to the exact behavior of JS elements injected in webpages,
but can still provide a high-level insight into them. Since webpages
are typically HTML documents, the design of such an approach
requires understanding how JS interacts with the Document Object
Model (DOM), which is the main programming interface for HTML
documents that defines their logical structure and the way in which
they can be accessed and manipulated.

To interact with the DOM, JS utilizes a set of exposed Application
Programming Interfaces (APIs). Therefore, and instead of trying
to understand the exact behavior of a JS code segment injected in
a webpage, it is meaningful to analyze the utilization of APIs in
that segment to interact with the DOM. From a high-level point of
view, JS interaction with the DOM can take one of the following
forms: reading, writing, and/or event handling. Hence, we create
a set of features based on the specifications of DOM APIs [16]
and HTML DOM APIs [17] and map each feature to one of these
interactions. The mapping process results in a complete feature
store that consists of a full set of labeled features.

Our feature store aids a classification algorithm, which classifies
each JS element found in awebpage tomake simplification decisions
on the page based on these classes. The classification algorithm
prioritizes event handling as a feature that is critical to the browsing
experience. If a script is found to utilize features that were labeled
as event handlers, then it is classified as critical. Whenever a script



WWW ’20, April 20–24, 2020, Taipei, Taiwan Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian

is found not to use event handling features, it is checked against the
features labeled as writing features. Many modern webpages utilize
these features to produce a set of HTML tags and attach them to the
DOM. We refer to these scripts as replaceable scripts, in the sense
that their content can be translated into pure HTML. Besides, any
script that is found not to be critical or replaceable is considered as
non-critical. To produce a lighter version of a webpage, JSCleaner
employs two major processes:

(1) JavaScript Classification: is the process of categorizing each
JS element in a webpage based on a set of features, into one of
the following categories: critical, non-critical or replaceable.

(2) Webpage Simplification: is the process of making a decision
on each of the classified JS elements to create the simplified
page. The decision can be: preserve, translate, or remove.

4.1 Feature Engineering
The feature engineering process aims to create a set of features to
aid JSCleaner in feature extraction, JS classification and webpage
simplification. We define a feature as a JavaScript-Web (JSW) fea-
ture, which can be a property, a method or an event handler that
can be accessed by JS via a Document Object Model (DOM) [16]
API, or a DOMHTML [17] API. To design a complete set of features,
we consider the full list of DOM APIs and DOM HTML APIs that
are identified in [16] and [17], along with their properties, methods,
and events. These APIs represent all possible ways to access an
arbitrary webpage according to the latest DOM standards. These
APIs are not part of the core JS language specification, but they are
modeled as JS objects to provide access to webpages.

To ensure the completeness of the considered set of APIs, we
selected a dataset of 2275 popular webpages, and extracted the
API calls from the JS elements they utilize. The total number of
JS elements found in these webpages is 89,998. Results show that
there is no missing API in our list of DOM and DOM HTML APIs,
since no additional APIs could be found in the extracted list of APIs.
Therefore, our list of APIs can be considered as a complete set of
interfaces to connect webpages to JS or programming languages.

We referred to the specification of each of the DOM and the
DOM HTML APIs to manually label each of the JSW features based
on the description that is provided by [16] or [17]. The full feature
set includes all the properties, methods and events associated with
the APIs. The manual feature labeling process aims at correctly
categorizing each of the features in order to aid the JS classification
and the webpage simplification processes. Based on the full set of
JS APIs, we could identify four possible labels:

(1) A Reading Feature: where the only possible utilization of a
feature is to read or extract information via an interface. For
instance, the only way to utilize the method getElementsBy-
TagName() of the document interface is to pass a tag name
as a parameter (such as ’script’ for instance), so that the
required set of DOM elements is extracted and returned.

(2) A Read/Write Feature: where the same feature can be used to
get (read) or set (write) values via interfaces. For example, the
element.id property is used not only to return (read) the ele-
ment’s identifier (which reflects the id global attribute), but
also to set the id value, which must be unique in a document.

(3) A Writing Feature: where a feature can only be used to
alter HTML, by creating/adding new features, or chang-
ing/removing existing features. These include both the writ-
ing and the pre-writing properties and methods. The ap-
pendChild() method of the Node interface presents a clear
example of a writing feature that writes to HTML by adding
an element. It specifically adds a child node to the end of
the list of children of a certain parent node. Since the only
possible utilization of the appendChild() method is to write
to HTML, it is labeled as a writing feature. An example of
pre-writing features can be represented by the method doc-
ument.createElement(), which can create an HTML element
specified by a tag name, but do not actually attach the created
element to the DOM.

(4) An Event feature: where a feature is correlated with a web-
page event by any mean (creation, setting, handling, or re-
moving). Example properties include onclick (which is used
for processing click events on elements), and onmouseover
(which is fired when the user moves themouse over a particu-
lar element). On the other hand, a clear representative exam-
ple method for an event feature is document.createEvent().

Prior to deciding the final feature set, we reviewed the full set to
identify duplicate features, where a property or a method is found in
the specification of more than one interface. These features include
common properties and methods such as id, name, type, width,
length, and height. From the design point of view, these features
can be neglected due to their common utilization, even by user-
defined functions and the JS language core [14]. After discarding
duplicates, we end up with a feature store of 1262 labeled features.
These features can be reproduced by extracting all the APIs specified
in [16] and [17], along with their properties, methods, and events.

4.2 JavaScript Classification
JS classification aims to attach a particular class to each JS element
found on a webpage. To do so, JSCleaner employs a feature extrac-
tion process to generate a list of features for each script injected in
a webpage. Whenever a DOM or HTML DOM access is captured
in a script, its features list is updated to reflect that access. Fea-
ture extraction is based on the labeled JSW features located in the
feature store. Each JS element injected in a webpage is parsed by
JSCleaner to extract all the features that are found to be identified
in the JSW feature store. As we show in Figure 1, the output of the
feature extraction process is a set of records, each record represents
the features extracted from a certain JS. For a given webpage, the
total number of records generated by the feature extraction pro-
cess equals the number of JS elements found in the given webpage.
These records of extracted features are inputted to the JSCleaner
classification algorithm for one of the following class assignments:

(1) Critical: where a set of features labeled as events are found.
(2) Replaceable: where a set of features labeled as writing fea-

tures are found.
(3) Non-critical: where neither event features nor writing fea-

tures are found.
Specifically, we classify JS elements that utilize event features as

critical due to the fact that the main objective of linking webpages
to JS is to provide user interactivity features, such as displaying



JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup WWW ’20, April 20–24, 2020, Taipei, Taiwan

Table 2: Rule-based classification symbols

Symbol Interpretation

F (x ,d) x is a feature of document d
l(x) the label given to feature x
f (d) the class assigned to document d

u(x ,d) the utilization type of feature x in document d
e an event label
w a writing label
rw a read/write label

critical Critical JS class
rep Replaceable JS class

noncritical Non-critical JS class

a list of options by clicking on a drop-down menu item. Event
handling is the only known methodology to provide such a user
interactivity feature in webpages. Besides event handling, JS can be
utilized to dynamically produce and attach HTML to webpages via
writing features. We refer to these scripts as replaceable scripts, in
the sense that their content can be translated into pure HTML. Any
script that is not critical or replaceable is considered as non-critical
from the user perspective. The rationale behind the classification
approach of JSCleaner is to reduce JS usage in webpages, by making
simplification decisions for each JS element based on its class.

Formally, we define a domain of JS documentsD = {d1,d2, ...,dn }.
The classification function f : D → C assigns a class c from the
set of predefined classes C = {critical , replaceable,noncritical}
to each document di ∈ D. The class assignment is based on a set
of predefined logical rules. The classification function considers a
list of extracted script features to classify each script according to
these rules. Each rule can be expressed as a predicate logic sentence.
Table 2 provides the symbols interpretation of the rules. The basic
logical rules considered in our classifier is represented as following:

∃x : F (x ,d) ∧ l(x) = e → f (d) = critical (1)

((∃x : F (x ,d) ∧ l(x) = w)∨

(∃x : F (x ,d) ∧ l(x) = rw ∧ u(x ,d) = write))∧

(�x : F (x ,d) ∧ l(x) = e) → f (d) = rep

(2)

(�x : F (x ,d) ∧ l(x) = w) ∧ (�x : F (x ,d) ∧ l(x) = e)∧

(�x : F (x ,d) ∧ l(x) = rw ∧ u(x ,d) = write) → f (d) = noncritical
(3)

Our rule-based classifier starts by assigning a default class to
the script being processed. Then, it evaluates the script extracted
features to set the final class. The algorithm defines a list of feature
labels L = {e,w, rw, r }, ordered according to predefined priority
values. The algorithm has access to the JSW feature store to map
each extracted feature to its corresponding stored label. According
to the predefined priorities, the classifier looks for event features
first. If a JS element is found with a feature labeled as e , it will be
classified as critical as stated in eq. 1. Otherwise, if no event features
are found, the algorithm examines the next prioritized features that
are labeled as w . If any of these features is fetched in a script, a

replaceable class is returned. Another case is identified where a JS
element is classified as replaceable , which is found in the second
line of eq. 2. When there exists a feature that is labeled as read/write
feature (rw), the classifier checks the utilization function u(x ,d),
which defines the utilization of feature x in a document d . Possible
utilization of an rw feature is either to write or read . According
to eq. 2, if an rw feature is found with utilization u(x ,d) = write ,
a replaceable class might be returned (if the third clause of the
equation applies). In cases where neither event features nor writing
features are found in a script, it is classified as non-critical (eq. 3).

The classification algorithm considers JS dependency to identify
and re-classify dependent scripts. These are defined as JS elements
that depend on other JS to function properly. Hence, we propose
dependency tracking to ensure that JS dependency does not result in
broken page content or functionality. That is, grouping dependent
elements, and re-classifying them when necessary. For a group
of dependent JS elements, the re-classification checks the highest
priority class among the group, and assigns the same class to all
the elements in the group. Possible classes are ordered according to
their priority, from the highest to the lowest as: critical, replaceable,
and non-critical. One approach to implement such a JS dependency
tracking is to utilize the reference errors reported in the browser
console. This can be achieved by enabling one script at a time,
and checking for reference errors. If an error exists, then we start
enabling other scripts one at a time until that error disappears. Since
this is an extremely costly process in terms of time complexity, we
currently consider only a two-level dependency.

4.3 Webpage Simplification
Once every JS element injected in a webpage is assigned to the
appropriate class, a web page is tackled by the simplification process,
which makes a decision on each script based on its class. Every JS
element that is marked as non-critical is completely removed from
the new simplified page, whereas critical elements are preserved.
For scripts that are classified as replaceable, we aim to translate
them into HTML for the purpose of a complete replacement. We
utilized the HTML output generated by those scripts using Selenium
WebDriver [5], along with Firefox 67.0 (64-bit) browser.

For each webpage, JSCleaner prepares an intermediate version
which only contains replaceable scripts, and opens it using Selenium
to save its source. This way, JSCleaner can utilize Selenium for
translating replaceable JS into pure HTML, and then remove them
from the translated page. In handling replaceable JS, JSCleaner
assumes the following versions of a webpage:

(1) The original page: indicates the original HTML of the page.
(2) The page to translate: is the HTML of the original page with

critical/non-critical JS removed. Keeping only replaceable JS.
(3) The translated page: is the HTML source extracted after open-

ing the page to translate using Selenium.
(4) JSCleaner Page: is the final version of the JSCleaner webpage,

after removing replaceable JS from the translated page, and
inserting back the critical JS found in the original page

In Figure 2, we show the steps involved in the simplification
process. To generate the JSCleaner Page of a certain webpage, the
original page is used to generate the corresponding page to trans-
late, which is then opened using Selenium to translate replaceable



WWW ’20, April 20–24, 2020, Taipei, Taiwan Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian

JS into HTML. The resultant translated page is then cleaned by
removing replaceable scripts (since their HTML has already been
translated), and to eliminate the potential redundancy that may
occur due to the utilization of Selenium source. Finally, critical
JS elements found in the original page are inserted back before
outputting JSCleanerPaдe .

The 
original 

page

Translate Using 
Selenium

Remove Critical and Non-
critical JavaScript

The page 
to 

Translate

The 
translated 

page

Remove Replaceable 
JavaScript

Insert Critical JavaScript 
as in the original page

JSCleaner 
Page

Figure 2: JSCleaner simplification process

5 IMPLEMENTATION AND DEPLOYMENT
Our prototype implementation consists of the JSCleaner engine
and a proxy server both written in python, as well as a MySQL
database. We selected a set of 500 popular webpages from [4], which
includes diverse pages such as: news sites, education, sports, en-
tertainment, travel, and government pages. The proxy server is
used to clone and replay webpages for two main purposes: first, to
extract the embedded JS, and second, to enable comparative perfor-
mance evaluation and analysis. i.e., being able to freeze a particular
version of a webpage to have reproducible results. We extended
MITM proxy [9] using its flexible scripting approach. We created
our own addon to intercept all HTTP requests, and create our own
HTTP replies. By linking this addon to the database, it is possible
to clone and replay HTTP replies with their full content. When
an HTTP request comes in, the database is checked for a possible
match to serve the cached HTTP reply immediately. If the request
is not found, the script allows for the normal proxy procedure to
fetch the request from the Internet. Once the reply comes in, and
before serving it back to the client, a copy is saved locally and a
new entry is stored in the database. JSCleaner follows the steps
discussed in section 4 to produce the simplified JSCleaner version
for each webpage, and then inject it into the proxy and the database,
using the same original URL with the addition of "JSCleaner.html"
concatenated to its end. To deploy JSCleaner, we envision three
different practical scenarios:

• As a Proxy server: Similar to our current implementation
scenario, JSCleaner can be deployed as a separate web proxy
that is capable of delivering simplified versions of webpages
either on the fly, or as a cached version. This could be in
the form of a business enterprise that serves customers with
simplified versions. The drawback is that it is not transparent
to the clients, because they need to configure the proxy.

• As a Browser Plugin: JSCleaner can be integrated into a
browser plugin to analyze and classify JS elements embed-
ded in webpages, and then block certain elements based on
their classes. To gain the full potential of this approach, the
plugin must analyze each page at least once beforehand, to
aid blocking certain non-critical JS as well as translate re-
placeable ones. This approach can benefit from a centralized

server that the plugin can share its own classification out-
come with regularly, as well as receive regular updates on
webpages analyzed by others. This would help in decentral-
izing the classification process across multiple devices. Of
course, certain considerations need to be addressed, such as
versioning control and classification expiries.

• As an Analysis Engine for Content Providers: This scenario
suggests to use JSCleaner by content providers as an analysis
and a simplification engine. By exposing the different groups
of replaceable and non-critical JS elements, content providers
can decide to alter their existing webpages or offer lighter
versions for performance improvement.

Each of the three deployment scenarios could work on its own.
We envision that the most promising scenario is the browser plugin,
since it does not require many changes to the network or content
servers. In addition, it is relatively easy for web users to utilize
browser plugin. Finally, JSCleaner can have a caching mechanism
with a certain timeout strategy. If a page is still within that time,
then the cached version can be served, otherwise, the new page
would be re-created. In this paper, we considered running JSCleaner
when the webpages are requested for the first time.

6 EVALUATIONS
The evaluation methodology focuses on JSCleaner performance
from several aspects. We split our evaluations into two separate
main categories: quantitative and qualitative evaluations. The aim
of the quantitative evaluation is to highlight JSCleaner performance
gains, whereas the qualitative evaluation aims at assessing JSCle-
aner accuracy in terms of the attained webpage similarity compared
to the original, including both visual and functional similarities. We
cloned a set of 500 popular webpages using the MITM proxy, which
was also utilized to serve these pages for the purpose of evaluation.
We compared the performance of two versions for each webpage:

• The original page.
• JSCleaner page, which is a simplified version of the original
page, generated by JSCleaner.

6.1 Evaluation Setup
The evaluation setup consists of two desktop computers and a smart
phone, as shown in Figure 3. We used two different phones for the
evaluations: Xiaomi 6A, and Samsung Galaxy S8+. The Xiaomi
phone is considered a low-end smart phone that costs about 80$,
and comes with a 2GB RAM. The Samsung Galaxy S8+ is considered
a high-end device, that costs about 500$ and comes with 6GB RAM.
The first desktop machine is used as a web server that serves the
500 webpages, using the modified MITM proxy. We pre-cloned
all the pages beforehand. The MITM proxy has been extended to
replay contents by examining the request headers. The mapping
metadata is saved in a database, where the MITM proxy first checks
if the request URL exists, and then gets the saved object content
from the hard disk and serves it back to the client. This MITM
proxy was configured to operate on port 8080 to serve the original
webpages. We configured a second MITM proxy to operate on the
same machine (on port 9999) to serve the JSCleaner pages. The
reason behind using a second proxy is that JSCleaner eliminates a
number of non-critical scripts by removing them from the rendered



JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup WWW ’20, April 20–24, 2020, Taipei, Taiwan

page. An eliminated script might not be part of the index (the
page before rendering), where the script can simply be requested
recursively by another resource from within the index page. If such
a script request is detected by the MITM proxy, the proxy will
simply reply with an empty object with status code "200 OK".

Internal 
Network

Network 
limiter MITM proxy 8080

MITM proxy 9999

JSCleaner DB

WebPageTest

Figure 3: Evaluation setup

The second desktopmachine is used for running theWebpagetest
[6]. The Webpagetest tool is used to automate webpage requests on
amobile phone by firing one of the phone browsers and requesting a
certain page. The tool hooks into the browser dev-tools and records
various metrics such as the different page load timings ranging
from the first paint to the full load time of the page. Webpagetest
also records the full waterfall HTTP Archive (HAR) representation
of the session as well as a screen-shot of the rendered page. We
configured Webpagetest to request the 500 webpages using the
Chrome web browser. The phone is connected to the 2nd Desktop
machine using a USB cable so that the Webpagetest can control and
record the experiments. On the other hand, the phone is connected
to the first desktop machine using Wi-Fi. We alternate between the
two proxies depending on the experiment, i.e., original vs. JSCleaner.
In order to study the effect of JSCleaner, we evaluated 4 different
network types between the phone and the proxy:

• Emulated 2G: 280 kbps bandwidth and 800 ms Round Trip
Time (RTT).

• Emulated 3G: 1.6 Mbps bandwidth and 300 ms RTT.
• Emulated 4G: 9 Mbps bandwidth and 170 ms RTT.
• No network restrictions: using the phone Wi-Fi with no
bandwidth restriction and RTT lower than 1 ms.

In terms of the evaluation metrics, we mainly focused on:
• First Meaningful Paint: is the time when the main element
of the page is shown (known as the hero of the page).

• Dom Interactive: is the time when the DOM has finished
analyzing all HTML and blocking JS objects.

• Dom Complete: is the time when all of the processing is
complete and all of the resources finished downloading.

• Full Load: is the overall page load time when everything is
fully loaded.

• Page Size: is the overall downloaded page size.
• Number of requests: is the total number of objects requested
by the page over the network.

6.2 JSCleaner Quantitative Evaluation
To evaluate the effectiveness of JSCleaner in terms of speeding up
PLTs, we compared the 500 webpages for both the original page
and JSCleaner page. Since the idea behind JSCleaner is to remove a
number of non-critical scripts and translate replaceable scripts with
their HTML counterpart, we hypothesized that there should be a

considerable improvement in PLTs, so that the utilized low-end
mobile phone is not required to evaluate and process the same
number of JS elements embedded in the original webpages. In our
quantitative evaluation, We first quantified the gain of only cutting
down JS processing without the effect of any other factor. This was
achieved by simply not putting any restriction on the bandwidth or
the network delay, hence the PLT will mainly be influenced by the
JS processing cost. Second, we aimed to investigate if the network
has an impact on JSCleaner evaluation due to the dependencies
between JS browser processing and the network requests that can
block each other [24]. Thus, we evaluated the performance over
multiple cellular channels, mainly: 2G, 3G and 4G network. Since
the first and the second quantitative evaluations were carried out
using a low-end smart phone, the third evaluation revolved around
testing JSCleaner gains when using a high-end smart phone.

6.2.1 Effect of JavaScript Processing. In this evaluation, we quanti-
fied the impact of JSCleaner by focusing only on the reduction of
JS processing. The 500 webpages were requested using the low-end
phone. Figure 4 shows the Cumulative Distribution Function (CDF)
of the Dom Complete (red curves) and Full Load (blue curves) for
both the original pages and JSCleaner pages represented by the
solid and the dashed curves, respectively. The figure shows that
JSCleaner curves have a relatively lower Dom Complete and Full
Load times compared to the original. At the median value (the 50
percentile of the curve), JSCleaner manages to reduce the Full Load
by about 38%. In fact, the percentage of reduction increases with
higher percentiles, visible by the increased gap between the solid
blue and dashed blue curves.

0 10 20 30 40 50
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Dom complete (Original)
Dom complete (JSCleaner)
Full time (Original)
Full time (JSCleaner)

Figure 4: CDF comparison of the dom complete and full load
between the original page and JSCleaner page

Figure 5 shows the box plot comparison of different time compo-
nents starting from the First Meaningful Paint to the Full Load. The
light blue boxes represent the original pages, whereas the red boxes
represent JSCleaner pages. It can be seen that JSCleaner manages
to reduce almost all of the times across all components, in some
marginally compared to higher gains in the full load times. Not only
visible through the median values but also the lower and higher
percentiles. The main gain comes in the dom and full load because
thats around the time that most JS elements are evaluated. Figure 6
shows the boxplot results of the total number of requests on the left
side of the figure, and the page size on its right side. Results show
that JSCleaner has reduced the total number of requests by about
50% compared to the original pages. Similarly, JSCleaner reduces



WWW ’20, April 20–24, 2020, Taipei, Taiwan Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian

the page size by about 30% by eliminating a number of non-critical
scripts along with their subsequent requests.

First mean-
ingful paint

Dom 
Interactive

Dom 
complete

Full 
load

0

10

20

30

40

50

Ti
m

e 
(s

)

Original
JSCleaner

Figure 5: Boxplot comparison of different load times be-
tween the original page and JSCleaner page

0

50

100

150

200

250

300

N
um

 o
f r

eq
ue

st
s 

(#
)

Original
JSCleaner

0

500

1000

1500

2000

2500

3000

3500

4000

Pa
ge

 s
iz

e 
(k

By
te

)

Figure 6: Boxplot of pages’ size and total number of requests

6.2.2 Effect of different Cellular Networks. In the previous subsec-
tion, we quantified JSCleaner gains purely through the JS processing
time reduction. In this subsection, we aim to study if the network
conditions play a role in increasing or decreasing the JSCleaner
gains seen earlier. The rationale behind this analysis comes from
the fact that webpage rendering is often a complex task [24] with
numerous dependencies among objects being evaluated, and other
objects being requested. Figure 9 shows the CDFs of the Dom Com-
plete and the Full Load times across the three different cellular
conditions 2G, 3G and 4G (from left to right). Similar to the CDFs
shown earlier when there were no network restrictions, it can be
seen that JSCleaner manages to reduce both times, evident by the
gap between the dashed and the solid curves. Figure 10 shows the
boxplot of the different load times across different network settings.
What can be observed from these results is that the JSCleaner gain
in reducing the Full Load time is higher in faster networks (4G)
compared to slower networks (2G). This can be seen in the sum-
mary figures 7 and 8, where the median relative Full Load time
reduction is increased from about 21% in 2G to about 27% in 4G.
This can be explained by the fact that even though JSCleaner man-
ages to cut down some of the JavaScript processing time, some
of this reduction is not fully utilized because of the slow network
downloading time of 2G. Despite 4G’s higher relative reduction in
the Full Load, the absolute reduction in the case of 2G network is
16 seconds, which is quite significant compared to the 8 seconds
and 5 seconds reduction of 3G and 4G, respectively.

2G 3G 4G0

20

40

60

80

M
ed

ia
n 

fu
ll 

lo
ad

 t
im

e 
(s

) 75

30

19

59

22
14

Original
JSCleaners

Figure 7: Comparison of the
median full load time for
different network settings

2G 3G 4G0

10

20

30

40

50

60

70

Fu
ll 

ti
m

e 
re

du
ct

io
n 

pe
rc

en
ta

ge
 (

%
)

23
29

34

21
27 27

22

32 29

25%
50% (median)
75%

Figure 8: Full load time re-
ductions for different net-
work settings

6.2.3 Effect of High-End Phone. The purpose of this evaluation
is to show the pure processing gain of JSCleaner, by testing the
effect of using a high-end phone under the emulated 4G network
setup, compared to the low-end phone used earlier, under the same
4G settings. We selected Samsung Galaxy S8+ for this evaluation.
Results are shown in Figures 11 and 12. Results show that there
is about 30% reduction in the median full load time when using
JSCleaner, which is slightly higher than the 27% reduction obtained
earlier for the low-end phone under the same network settings.
It can also be seen that the absolute median full load time has
improved compared to the low-end phone results simply because of
the better phone resources (3x larger memory and faster CPU). The
faster load times are achieved purely due to the faster JS processing
capability of the high-end phone.

6.3 JSCleaner Qualitative Evaluation
A crucial aspect of evaluating JSCleaner is to analyze the accuracy
of JS classification. One of the main goals behind JSCleaner is to
simplify the page complexity while retaining the same look and
functionality of the original page. We conduct a user evaluation
study to compare the visual as well as the functional differences
between the original pages and JSCleaner pages for a set of popular
websites. For qualitative evaluation of webpages generated by JS-
Cleaner, we randomly selected 10% of the 500 cloned webpages (50
pages). We excluded non-English pages (because of our evaluator
pool), as well as pages that were not simplified by JSCleaner (where
exactly the same number of JS elements is detected in both the
original and the JSCleaner page).

6.3.1 Users Recruitment. Users were recruited from an interna-
tional university campus by posting online ads on popular social
media groups that the students are part of. They were given the
chance to reserve a 30 minutes slot from three possible dates. We
received more than 120 reservations but ended up with about 103
that actively took part in this study. Recruited students were not
part of this work by any means beforehand. They all spoke Eng-
lish and came from different backgrounds and study disciplines,
as well as different stages of their university journey (freshmen,
juniors, and seniors). The user study was conducted in our lab with
three parallel slots, each totaling 35 minutes. During the first five
minutes of the slot, we explained the general purpose of the study
as well as how to use the evaluation tool. Recruited students were
informed that a set of webpages were simplified for performance



JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup WWW ’20, April 20–24, 2020, Taipei, Taiwan

0 50 100 150 200
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Dom complete (Original)
Dom complete (JSCleaner)
Full time (Original)
Full time (JSCleaner)

(a) 2G network

0 20 40 60 80 100
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Dom complete (Original)
Dom complete (JSCleaner)
Full time (Original)
Full time (JSCleaner)

(b) 3G network

0 20 40 60
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Dom complete (Original)
Dom complete (JSCleaner)
Full time (Original)
Full time (JSCleaner)

(c) 4G network

Figure 9: CDF of webpages loading timings comparison (low-end device)

First mean-
ingful paint

Dom 
Interactive

Dom 
complete

Full 
load

0

50

100

150

200

Ti
m

e 
(s

)

Original
JSCleaner

(a) 2G network

First mean-
ingful paint

Dom 
Interactive

Dom 
complete

Full 
load

0

20

40

60

80

100

Ti
m

e 
(s

)

Original
JSCleaner

(b) 3G network

First mean-
ingful paint

Dom 
Interactive

Dom 
complete

Full 
load

0

10

20

30

40

50

60

70

Ti
m

e 
(s

)

Original
JSCleaner

(c) 4G network

Figure 10: Boxplot of webpages loading timings comparison (low-end device)

0 10 20 30 40 50
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Dom complete (Original)
Dom complete (JSCleaner)
Full time (Original)
Full time (JSCleaner)

Figure 11: CDF of dom complete & full load for high-end
phone with 4G network

improvement (mainly in terms of load time), and their role is to
evaluate the quality of the simplification from different perspec-
tives. In addition, we gave them a practical step by step example
of how to do the evaluation. They were then asked to evaluate as
many pages as they could within the rest 30-minute slot, and they
were compensated with cash for their time. An institutional review
board (IRB) approval was given to conduct the user study, and all
the team members have completed the required research ethics and
compliance training, and were CITI [1] certified.

6.3.2 Evaluation Tool and Metrics. We designed an evaluation tool
which consists of a form that is connected to two Firefox browser
windows side-by-side, where the left window connects to theMITM

First mean-
ingful paint

Dom 
Interactive

Dom 
complete

Full 
load

0

10

20

30

40

50

Ti
m

e 
(s

)

Original
JSCleaner

Figure 12: Boxplot of different load times for high-end
phone with 4G network

proxy that servers the original pages, and the right windows con-
nects to the proxy that serves JSCleaner pages. The evaluation tool
randomly selects a URL from the set of 50 pages. It displays the
original page of the selected URL on the left side browser window,
and the JSCleaner page on the right side window. A sample case for
evaluation is shown in Figure 13). The user is asked to compare the
two pages and fill in the form with the following considerations:

(1) Look Similarity: where the user is required to rate the look of
JSCleaner page compared to the original page using a slider
with a 0-to-10 scale. The rate of 0 is interpreted as the two
pages do not look similar at all, whereas a rate of 10 means
that the two pages look exactly the same. A rate between 0



WWW ’20, April 20–24, 2020, Taipei, Taiwan Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian

and 10 refers to the partial similarity that matches the given
rate.

(2) Content Completeness: where the user is asked to rate if
JSCleaner page maintained all the user relevant content in
comparison to the original, regardless of page beautifications
or non-relevant content such as advertisements.

(3) Missing Content: which measures if JSCleaner page missed
any content such as text, images, ads, videos, layout compo-
nents, and other embeds (such as maps and tweets).

(4) Functional Similarity: which refers to the similarity of JS-
Cleaner page compared to the original from the functional
perspective. The evaluators were asked to count the num-
ber of functional elements within the original page (menus,
navigational elements, search bars, and image or gallery
scroller), and then quantify if the same elements exist in
JSCleaner page and whether they are still functional. These
elements were identified throughout our dataset observation
as the most appearing functional elements, which provide
interactivity at the user level.

Figure 13: Evaluation tool: A sample case to evaluate

6.3.3 Evaluation Results. The user study was conducted by 103
students, with a total of about 1300 evaluations. Each of the 50
pages was evaluated for at least 20 times, with some pages being
evaluated about 30 times due to the random selection process of
the evaluation tool, and the students’ speed in analyzing the pages.

Figure 14 shows the results of the user study for the page simi-
larity and the content completeness. It can be seen from the figure
that according to the evaluators, JSCleaner pages maintained the
same look and content to the original pages with a median value
of over 93% and 95%, respectively. Results also show a very small
95% confidence interval. Figure 15 illustrates the missing content

Table 3: Functional similarity across different elements

Functional Pages with Pages with
elements these elements working elements

Menus/Navigation 29 26
Search bars 30 28
Image/gallery scrollers 8 7

breakdown across the different types. The light blue bar shows the
percentage of pages that did not have any missing content, whereas
the red bar shows the percentage of pages that had some missing
elements. It can be seen that for about 90% of the pages, JSCleaner
managed to maintain all of the original page elements, apart from
someminor layout misalignments that went to about 19%. It’s worth
noting that from the user perspective, there was no loss in any vital
content for more than 90% of the pages. Nevertheless, even for the
remaining 10% of the pages, the loss was not significant, evident by
the over 95% of content completeness shown earlier in Figure 14.
Table 3 shows the number of webpages with the different functional
elements, as well as the number of simplified webpages with the
maintained functionality. Out of the 50 evaluated pages, we had: 29
pages with active menus and navigation elements, 30 pages with
search bars, and 8 pages with active image/gallery scrollers. Results
show that the functional elements were fully maintained in about
88% of the pages. For the remaining 12%, some of the navigational
elements were not fully functional. However, the lost functionality
is not affecting the overall user experience since users reported a
much higher content/page similarity to the original page, and none
of the core features were lost across any of the pages.

Page similarity Content completeness0

2

4

6

8

10

Sc
or

e 
(0

 - 
10

)

9.3 9.5

Figure 14: Page similarity
and content completeness

Text Images Ads VideoLayoutOther
embeds

0

20

40

60

80

100

120

140

pe
rc

en
ta

ge
 o

f w
eb

pa
ge

s 
(%

)
Not missing content
Missing content

Figure 15: Percentage of
pages missing content

7 CONCLUSION
In this paper, we presented JSCleaner, a de-cluttering engine which
relies on a rule-based JavaScript classification algorithm for making
simplification decisions on webpages. Another intuitive classifica-
tion approach is to utilize machine learning, by training an appropri-
ate model using sample data, and then utilize it for class prediction.
However, the main challenge in this approach is that there exists no
known annotated data set for classifying JS. Attempting to create
such a set is a challenging task, as it involves JS experts capable
of understanding the effect of each script within a page. Another
approach is to design a complex human-based annotation platform,
where a crowd-sourced environment can be utilized to inspect and
annotate JavaScript.



JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup WWW ’20, April 20–24, 2020, Taipei, Taiwan

REFERENCES
[1] 2019. CITI Program - Collaborative Institutional Training Initiative. www.

citiprogram.org. Accessed: 2019-10-10.
[2] 2019. How we built Facebook Lite for every Android phone and net-

work. https://code.fb.com/android/how-we-built-facebook-lite-for-every-
android-phone-and-network/. Accessed: 2019-06-25.

[3] 2019. HTTP Archive. https://httparchive.org/. Accessed: 2019-09-10.
[4] 2019. Majestic Million - Majestic. https://majestic.com/reports/majestic-million.

Accessed: 2019-09-10.
[5] 2019. Selenium WebDriver. Browser Automation. https://www.seleniumhq.org/

projects/webdriver/. Accessed: 2019-05-14.
[6] 2019. WebPageTest - Website Performance and Optimization Test. https://www.

webpagetest.org/. Accessed: 2019-09-10.
[7] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011. Understanding

Website Complexity: Measurements, Metrics, and Implications. In Proceedings of
the 2011 ACM SIGCOMMConference on Internet Measurement Conference (IMC ’11).
ACM, New York, NY, USA, 313–328. https://doi.org/10.1145/2068816.2068846

[8] Arthur Charguéraud, Alan Schmitt, and ThomasWood. 2018. JSExplain: A Double
Debugger for JavaScript. In Companion Proceedings of the The Web Conference
2018. International World Wide Web Conferences Steering Committee, 691–699.

[9] maximilianhils cortesi and raumfresser. 2019. mitmproxy - an interactive HTTPS
proxy. https://mitmproxy.org/. Accessed: 2019-10-13.

[10] Yehia Elkhatib, Gareth Tyson, and Michael Welzl. 2014. Can SPDY really make
the web faster?. In Networking Conference, 2014 IFIP. IEEE, 1–9.

[11] Mohammad Ghasemisharif, Peter Snyder, Andrius Aucinas, and Benjamin
Livshits. 2018. SpeedReader: Reader Mode Made Fast and Private. CoRR
abs/1811.03661 (2018). arXiv:1811.03661 http://arxiv.org/abs/1811.03661

[12] Google. 2017. Find Out How You Stack Up to New Industry Benchmarks for
Mobile Page Speed. https://think.storage.googleapis.com/docs/mobile-page-
speed-new-industry-benchmarks.pdf. Accessed: 2019-05-11.

[13] Google. 2019. AMP is a web component framework to easily create user-first
web experiences - amp.dev. https://amp.dev. Accessed: 2019-05-05.

[14] Ecma International. 2019. ECMAScript® 2018 Language Specification. http:
//www.ecma-international.org/ecma-262/9.0/index.html. Accessed: 2019-05-05.

[15] Sergio Maffeis, John C. Mitchell, and Ankur Taly. 2008. An Operational Semantics
for JavaScript. In Programming Languages and Systems, G. Ramalingam (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 307–325.

[16] Mozilla and individual contributors. 2005. Document Object Model (DOM).
[17] Mozilla and individual contributors. 2005. The HTML DOM API.

[18] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016.
Polaris: Faster Page Loads Using Fine-grained Dependency Tracking. In 13th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
16). USENIX Association, Santa Clara, CA. https://www.usenix.org/conference/
nsdi16/technical-sessions/presentation/netravali

[19] Ravi Netravali, Vikram Nathan, James Mickens, and Hari Balakrishnan. 2018.
Vesper: Measuring Time-to-Interactivity for Web Pages. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18). USENIX
Association, Renton, WA, 217–231. https://www.usenix.org/conference/nsdi18/
presentation/netravali-vesper

[20] Addy Osmani. 2018. The cost of JavaScript. https://medium.com/@addyosmani/
the-cost-of-javascript-in-2018-7d8950fbb5d4. Accessed: 2019-05-05.

[21] Daejun Park, Andrei Stefănescu, and Grigore Roşu. 2015. KJS: A Complete Formal
Semantics of JavaScript. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’15). ACM, New York,
NY, USA, 346–356. https://doi.org/10.1145/2737924.2737991

[22] Marija Selakovic and Michael Pradel. 2016. Performance Issues and Optimiza-
tions in JavaScript: An Empirical Study. In Proceedings of the 38th International
Conference on Software Engineering (ICSE ’16). ACM, New York, NY, USA, 61–72.
https://doi.org/10.1145/2884781.2884829

[23] Srikanth Sundaresan, Nick Feamster, Renata Teixeira, and Nazanin Magharei.
2013. Community Contribution Award – Measuring and Mitigating Web Per-
formance Bottlenecks in Broadband Access Networks. In Proceedings of the 2013
Conference on Internet Measurement Conference (IMC ’13). ACM, New York, NY,
USA, 213–226. https://doi.org/10.1145/2504730.2504741

[24] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load Performance with WProf. In Presented
as part of the 10th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 13). USENIX, Lombard, IL, 473–485. https://www.usenix.org/
conference/nsdi13/technical-sessions/presentation/wang_xiao

[25] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
up Web Page Loads with Shandian. In 13th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 16). USENIX Association, Santa Clara,
CA, 109–122. https://www.usenix.org/conference/nsdi16/technical-sessions/
presentation/wang

[26] Jihwan Yeo, Changhyun Shin, and Soo-Mook Moon. 2019. Snapshot-based Load-
ing Acceleration of Web Apps with Nondeterministic JavaScript Execution. In
The World Wide Web Conference. ACM, 2215–2224.

[27] Yasir Zaki, Jay Chen, Thomas Pötsch, Talal Ahmad, and Lakshminarayanan
Subramanian. 2014. Dissecting Web Latency in Ghana. In Proc. of the ACM
Internet Measurement Conference (IMC). Vancouver, BC, Canada.

www.citiprogram.org
www.citiprogram.org
https://code.fb.com/android/how-we-built-facebook-lite-for-every-android-phone-and-network/
https://code.fb.com/android/how-we-built-facebook-lite-for-every-android-phone-and-network/
https://httparchive.org/
https://majestic.com/reports/majestic-million
https://www.seleniumhq.org/projects/webdriver/
https://www.seleniumhq.org/projects/webdriver/
https://www.webpagetest.org/
https://www.webpagetest.org/
https://doi.org/10.1145/2068816.2068846
https://mitmproxy.org/
http://arxiv.org/abs/1811.03661
http://arxiv.org/abs/1811.03661
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://think.storage.googleapis.com/docs/mobile-page-speed-new-industry-benchmarks.pdf
https://amp.dev
http://www.ecma-international.org/ecma-262/9.0/index.html
http://www.ecma-international.org/ecma-262/9.0/index.html
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/netravali
https://www.usenix.org/conference/nsdi18/presentation/netravali-vesper
https://www.usenix.org/conference/nsdi18/presentation/netravali-vesper
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://medium.com/@addyosmani/the-cost-of-javascript-in-2018-7d8950fbb5d4
https://doi.org/10.1145/2737924.2737991
https://doi.org/10.1145/2884781.2884829
https://doi.org/10.1145/2504730.2504741
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/wang_xiao
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/wang

	Abstract
	1 Introduction
	2 Motivation
	2.1 Javascript imposes a huge burden on PLT
	2.2 JS worsens PLT in low bandwidth networks
	2.3 JS might not be essential
	2.4 Existing repetitions across JS

	3 Related Work
	4 JSCleaner
	4.1 Feature Engineering
	4.2 JavaScript Classification
	4.3 Webpage Simplification

	5 Implementation and Deployment
	6 Evaluations
	6.1 Evaluation Setup
	6.2 JSCleaner Quantitative Evaluation
	6.3 JSCleaner Qualitative Evaluation

	7 Conclusion
	References

